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Many sensory systems, from vision and hearing in animals to signal
transduction in cells, respond to fold changes in signal relative to
background. Responding to fold change requires that the system
senses signal on a logarithmic scale, responding identically to a
change in signal level from 1 to 3, or from 10 to 30. It is an ongoing
search in the field to understand the ways in which a logarithmic
sensor can be implemented at the molecular level. In this work, we
present evidence that logarithmic sensing can be implemented with
a single protein, by means of allosteric regulation. Specifically, we
find that mathematical models show that allosteric proteins can
respond to stimuli on a logarithmic scale. Next, we present evidence
from measurements in the literature that some allosteric proteins
do operate in a parameter regime that permits logarithmic sensing.
Finally, we present examples suggesting that allosteric proteins are
indeed used in this capacity: allosteric proteins play a prominent role
in systems where fold-change detection has been proposed. This
finding suggests a role as logarithmic sensors for the many allosteric
proteins across diverse biological processes.
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Sensory systems in biology are faced with two seemingly con-
flicting goals: they must be sensitive to detect small changes

in signal (Fig. 1A), and at the same time, they must have a broad
response range because many natural signals vary over several
orders of magnitude (Fig. 1B) (1). To achieve these conflicting
goals, it has been proposed that many sensory systems have evolved
to tune their sensitivity over a wide range (Fig. 1C). In these sys-
tems, the pathway can adapt the regime to which it is most sensitive
depending on the magnitude of the signal they receive.
The ability to tune sensitivity over a broad range of signal is a

key property of the phenomenon known as fold-change detection,
where the change in activity of a system is not a function of the
level or absolute difference in signal, but of the ratio of signal to
background (2, 3). For example, a change in signal level from 1 to
3 or from 10 to 30 would yield an identical outcome. Fold-change
detection is related to the well-known Weber’s Law, which de-
scribes how our sensory systems tune their detection thresholds to
the background state (4). Weber’s Law has been proposed in many
sensory systems, including vision, weight perception, and taste, as
well as numerical and temporal cognition (4–7). Beyond sensory
systems in whole organisms, fold-change detection has recently
emerged at the cellular level, governing signal transduction in
animal cells. Specifically, studies in several signaling pathways
have presented evidence that gene transcription responds to the
fold change in the level of a transcription factor, rather than its
absolute level (8–11). Finally, evidence for fold-change detection
has also been observed in the sensory response of fungi (12),
bacteria (3, 13), and social amoeba (14).
Given the wide-ranging occurrence of fold-change detection, it

is therefore of interest to understand how fold-change detection
is implemented at the molecular level. It has been proposed that
fold-change detection can be mediated by specific classes of in-
coherent feedforward loops (Fig. 1D) and nonlinear feedback
loops (Fig. 1E) (3, 15). The authors also hypothesized that fold-
change detection can be realized using another type of circuit,
where an upstream logarithmic sensor is coupled with linear
feedback (Fig. 1F). Whereas feedforward and feedback circuits
are commonly found in biological systems, it is not clear how a

logarithmic sensor would be implemented. We define here a
logarithmic sensor as having two properties: (i) it must be able to
respond to changes in signal on a logarithmic scale; and (ii) it
must be logarithmically tunable, i.e., shift its response curve on a
logarithmic scale (Fig. 1C). We will rigorously define and analyze
these properties in the next section.
In this study, we explore the possible roles of allostery in fold-

change detection. An allosteric protein is one that has an effector
which regulates its activity by acting on a site physically distant from
the protein’s ligand-binding site. Allostery is found in a vast range
of processes, including metabolism, signal transduction, oxygen
and membrane transport, cell cycle regulation, and transcription
(16, 17). Allostery has been thought to mediate cooperativity,
for example, in hemoglobin and metabolic enzymes. Allostery
has also been thought to facilitate biological control loops, for
example mediating feedback in glycolysis (18).
We propose a function for allosteric proteins as logarithmic

sensors. In the context of bacterial chemotaxis, Lazova et al. (15)
and Tu et al. (19) have proposed that a logarithmic trans-
formation can emerge from the aspartate-sensing Tar receptors
that follow the Monod–Wyman–Changeux (MWC) model of al-
lostery. Here, we find that logarithmic sensing is a general prop-
erty of allostery, regardless of whether the conformational change
is thermally or kinetically driven, independent of the specific
model of allostery (e.g., conformational selection or sequential
binding) and can even be implemented in either a single protein or
a network of proteins. Essentially, we find that the capacity to act
as a logarithmic sensor arises from the fundamental feature of
allostery, the ability to tune the activity of a protein without di-
rectly affecting its binding kinetics. The broad presence of allo-
steric proteins raises the possibility that diverse cellular processes
may sense input in a fold-change manner, akin to how our sensory
systems work.

Results
To investigate whether an allosteric protein can act as a log-
arithmic sensor, we begin by analyzing a widely used model of
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allostery, the MWC model, proposed by Monod, Wyman, and
Changeux to explain cooperativity in metabolic enzymes and
hemoglobin (20, 21). The MWC model is based on conforma-
tional selection. The model considers a large homogeneous
population of proteins, where each protein has N identical
subunits that can independently bind ligand (Fig. 2A). Each
protein can either be in the active (A) or inactive (I) confor-
mation, each of which have different binding affinities for li-
gand. Conformational change occurs in an all-or-none fashion
when there is no ligand bound and is regulated by the binding
of an allosteric effector.
Let c be the concentration of ligand, KA and KI be the dis-

sociation constants associated with the active and inactive
conformations, and e«0 = I0

A0
be the equilibrium ratio between the

inactive and active conformations when no ligand is bound.
This parameter e«0 is known as the allosteric constant. «0 rep-
resents the free-energy difference when the system is at ther-
modynamic equilibrium, or the reaction equilibrium constant
when the system is at steady state. The fraction of proteins in
the active state aðc, «0Þ is

aðcðtÞ, «0Þ=

�
1+ cðtÞ

KA

�N
�
1+ cðtÞ

KA

�N

+ e«0
�
1+ cðtÞ

KI

�N . [1]

The MWC model is typically analyzed in a static context. Tu
and coworkers analyzed a dynamic version of the model in the
context of bacterial chemotaxis (19, 22) by taking partial deriv-
atives with respect to c,

∂a
∂c

=Nað1− aÞ K−1
A −K−1

I

ð1+ c=KAÞð1+ c=KIÞ. [2]

With this dynamic framework, we now examine the range
KA � c � KI where the ligand concentration is large enough
to facilitate binding to the active conformation, but not so
large as to allow binding to the inactive conformation.

This range can be substantial in some proteins, e.g., up to three
orders of magnitude in phosphofructokinase (PFK1) (23). In this
range, Eqs. 1 and 2 simplify respectively to

aðc, «0Þ≈
e−«0

�
c
KA

�N
1+ e−«0

�
c
KA

�N ,

∂a
∂c

≈N
e−«0

�
c
KA

�N
�
1+ e−«0

�
c
KA

�N�2
1
c
= Sðc, «0Þ 1c,

[3]

where we define the sensitivity function Sðc, «0Þ, which describes
the steepness of the activity curve:

Sðc, «0Þ≜N
e−«0

�
c
KA

�N
�
1+ e−«0

�
c
KA

�N�2. [4]

Representative plots of aðc, «0Þ and Sðc, «0Þ are shown in Fig. 2 B
and C. We give a detailed analysis in SI Materials and Figs. S1
and S2 of how Sðc, «0Þ varies with c and «0 for the full range of
ligand concentration.
Examining the dynamics of activity with respect to ligand changing

in time, we get the equation

da
dt

=
∂a
∂c

dc
dt

≈ Sðc, «0ÞKA

c
d
dt

�
c
KA

�
= Sðc, «0Þ ddt

�
ln

c
KA

�
. [5]

This equation shows explicitly that the rate of change in the ac-
tivity of an MWC protein is a function of the logarithm of ligand
concentration c.
The logarithmic dependence of an MWC protein occurs

within a certain range,

«0 − lnðτÞ
N

< ln
�

c
KA

�
<
«0 + lnðτÞ

N
, [6]

A B C

D E F

Fig. 1. Sensory systems have conflicting goals. (A) A sensitive system detects small changes in signal but has a narrow response range. (B) A broad-ranged
system responds to a large range of signal but is not sensitive to small changes. (C) A tunable sensor is both sensitive to small changes in signal and is capable
of adjusting its response curve logarithmically across a broad range. Proposed molecular circuits for fold-change detection. (D) An incoherent feedforward
loop is a common motif in gene regulatory systems, where an input activates an output, and at the same time a repressor of the output. (E) A nonlinear
feedback loop has also been proposed as a mechanism for fold-change detection. (F) A logarithmic-feedback circuit, built from a logarithmic sensor coupled
to linear feedback. In this study, we ask how a logarithmic sensor might be implemented at the molecular level.
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where τ parametrizes the limits of the logarithmic range. This range
is illustrated by the gray regions in Fig. 2 B and C, where we have
chosen as an example τ= 6. We provide a detailed derivation in

SI Materials for how the range (Eq. 6) translates into the gray
regions in Fig. 2 B and C.
τ can be related to the deviation of the MWC response curve

from a hypothetical ideal logarithmic sensor (the blue line in Fig.
2B, derived in SI Materials). If we tolerate, for example, at most
10% error [at the lower and upper limits of the range (Eq. 6) when
τ= 6], then an MWC protein with cooperativity N = 4 (e.g., he-
moglobin and PFK1) would have a logarithmic range of ∼2.5-fold
change in ligand concentration. A monomeric protein without any
cooperativity (N = 1) would have a logarithmic range of 36-fold
change in ligand concentration. Therefore, the range over which
the activity of an MWC protein is logarithmically dependent on
ligand concentration can be quite substantial. We see further
that this range can be increased at the expense of cooperativity,
telling us that there is an intrinsic tradeoff between sensitivity
and logarithmic range.
The logarithmic dependence of activity on ligand concentra-

tion is, however, not a unique feature of MWC proteins. Any
monotonic binding curve, e.g., that of a Hill model

aðcÞ=
�

c
KD

�N
1+

�
c
KD

�N , [7]

would also show some range for which activation depends
logarithmically on ligand. The requirement for a logarithmic
sensor we are considering here is a more stringent one: the activity
of the protein must also be logarithmically tunable (Fig. 1C). This
property will allow a protein that can already sense logarithmically
over some regime of ligand to extend its responsiveness to a
much greater range.
MWC proteins have the additional feature of logarithmic

tunability, facilitated by the presence of an allosteric effector.
Inequality Eq. 6 shows that the net effect of varying the allosteric
parameter «0 is a shift in the midpoint of the logarithmic range,
without changing its width (Fig. 2D). The logarithmic tuning of the
activity curve comes from the independent multiplicative relation-
ship between e«0 and c in Eq. 3. To contrast, a Hill protein with a
fixed KD has no capacity to tune its response curve logarithmically.
This property can be seen in Eq. 7, which is analogous to the ac-
tivation of an MWC protein in Eq. 3, except that there is no allo-
steric parameter «0. Allosteric regulation, which modulates the
structural conformation of a protein, produces logarithmic tuning in
the protein’s response range.
Now we may ask whether the capacity to act as a logarithmic

sensor is a unique feature of the MWC model. First, we find that
logarithmic tuning of the response curve does not depend on the
specific form of the equilibrium ratio e«0. Either an exponential
form or a polynomial form of this function, as originally used by
Monod, Wyman, and Changeux, work equally well (SI Materials)
(21). This result implies that an MWC protein can act as a log-
arithmic sensor whether it is thermally or kinetically driven.
Second, we find that other models of allostery also show the

capacity for logarithmic sensing. An alternative model of allo-
stery was proposed by Koshland, Némethy, and Filmer, known as
the KNF or sequential binding model (24). In this model, ligand
binding induces processive conformational changes, as opposed
to the all-or-none transition in the MWC model. We find that
activity of the KNF model can be tuned logarithmically, although
the model requires the regulation of more parameters (see deri-
vation in SI Materials and Fig. S3).
Finally, beyond a single protein, we find that a network of pro-

teins with appropriate connectivity can act as a logarithmic sensor.
We illustrate this finding by analyzing the G protein-coupled re-
ceptor (GPCR) system (Fig. 3A). GPCRs are a large family of seven-
transmembrane domain receptor that couples to a G protein. The
G proteins are composed of α, β, and γ subunits. Ligand binding
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Fig. 2. An MWC protein can act as a logarithmic sensor. (A) The MWC model
describes a protein that can switch between an active and inactive confor-
mation at a rate determined by the allosteric constant e«0 . The active state has
a ligand-binding affinity KA and the inactive state has an affinity KI. The white
and blue triangles represent binding sites unoccupied and occupied by ligand,
respectively. (B) Within a certain range, activity of the MWC protein, aðc, «0Þ,
depends logarithmically on the ligand concentration. The blue line indicates
the ideal logarithmic sensor, whose activity directly corresponds to the loga-
rithm of ligand concentration. The gray range indicates the range where ac-
tivity of the MWC protein coincides with that of the ideal logarithmic sensor
with a certain tolerable error. In this illustration, we set the error to be at most
10% (corresponding to τ= 6 in Eq. S9). (C) The sensitivity function Sðc, «0Þ is
related to the derivative of the activity function, aðc, «0Þ. The sensitivity func-
tion allows us to define a range (in gray) where the sensitivity is above a
certain threshold. In this illustration, the threshold is set to N

8, corresponding
approximately to τ= 6. In both B and C, we useN=4, KA = 10−3μM, KI = 102μM,
and «0 = 13. (D) The activity curve of an MWC protein can be tuned on a
logarithmic scale, by modulating the allosteric parameter «0.
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induces a conformational change in the receptor, which results in the
exchange of GDP for GTP in the alpha subunit. This exchange
causes the α subunit to break off and activate downstream targets.
The GPCR system is described by a mass-action model (Fig.

3A) (25):

_R= k1cð1−RÞ− k2R

_TGDP = k3αGDP − k4TGDPR

_TGTP = k4TGDPR− k5TGTP

_αGTP = k5TGTP − k6αGTP

_αGDP = k6αGTP − k3αGDP,

where R is the fraction of active receptors, c is the ligand concen-
tration, TGDP and TGTP are the concentrations of G protein with
GDP and GTP bound, and αGDP and αGTP are the concentra-
tions of α subunits dissociated from the G protein complex with
GDP and GTP bound. Additionally, let Ttot =TGDP +TGTP +
αGDP + αGTP be the total concentration of G protein.
Although this system of differential equations appears un-

related to the MWC model, we find upon solving the equations
that the steady-state activity of the GPCR system is

α̂GTPðcÞ= αGTP

Ttot
=

c�
1+ k6

k3
+ k6

k4
+ k6

k5

�
c+ k6

k4
k2
k1

, [8]

which is analogous to Eq. 3 in the MWC model (see detailed
derivation in SI Materials). The effective allosteric parameter

here is k6=k4, which regulates the availability of G proteins. As
plotted in Fig. 3B, varying k4 logarithmically tunes the activity
curve of the GPCR. This tuning eventually breaks down when
k4 becomes too low. In a later section, we will discuss the physi-
ological significance of tuning the rate k4.
Therefore, the capacity to act as a logarithmic sensor can be

realized when conformational changes in an allosteric protein is
either thermally or kinetically driven, whether allosteric regulation
is manifested through all-or-none or processive conformational
change, and whether allosteric regulation is realized by a single
protein with multiple subunits or a network of many proteins.
We formally define a logarithmic sensor as a system that satisfies
the property

aðc, «0 +Δ«Þ= a
�
e−κΔ«c, «0

�
, [9]

where κ is a scaling factor that corresponds to the rate at which
logarithmic shifting occurs. The particular value of κ will depend
on the parameters of the underlying system. With some manip-
ulation, we get

aðc, «0 +Δ«Þ= aðe−κΔ«c, «0Þ
= a

�
e−κΔ«elnðcÞ, «0

�
= a

�
elnðcÞ−κΔ«, «0

�
.

[10]

In any system where Eq. 9 holds, a linear shift in « results in a
logarithmic tuning of the response curve. We show in SI Materials
that the different models we have considered satisfy these require-
ments in Eq. 9 (e.g., the MWC model, the GPCR network, the
KNF model).
How might a logarithmic sensor be used in biological systems?

A logarithmic sensor can mediate fold-change detection when it
is coupled to a downstream feedback module (Fig. 4 A and B).
For example, consider a system that experiences a twofold change
in signal, from 25 to 50 (Fig. 4C, upper row). The logarithmic
sensor computes a twofold change, and produces an activity change
of Δa. Subsequently, the feedback module adapts the system to the
new signal level by allosterically tuning the response curve and
restoring the protein to the original level of activity. The system is
now poised to respond to signal changes again. If, from the basal
activity of 50, the system experiences another change in signal to
100 (Fig. 4C, lower row), the logarithmic sensor will again compute
a twofold change, producing an identical change in activity of Δa,
and the feedback module again adapts the system to the new signal
level. We simulate the interaction of allostery and negative
feedback, and confirm that they can indeed produce fold-
change detection (SI Materials and Figs. S4 and S5). Therefore,
the combination of a logarithmic sensor and adaptive feedback
produces fold-change detection by continually tuning the response
curve to a new background level, avoiding saturation and main-
taining sensitivity to subsequent changes in signal.

Evidence That Allosteric Proteins Are Used as Logarithmic Sensors.
Although our theoretical results show that allosteric proteins can
act as logarithmic sensors, in practice, there may be physical
limitations where the systems may not operate in an appropriate
parameter regime to facilitate this behavior. For example, it may
be that the inactive conformation is so heavily preferred that
ligand binding follows a Michaelis–Menten model. Alternatively,
the binding of allosteric effectors may be saturated, making it
impossible to tune the activity curve.
We therefore explored evidence in the literature to see whether

known allosteric proteins act as logarithmic sensors in physio-
logical contexts. We found two lines of evidence. First, we found
many measurements of allosteric proteins show response curves
that are logarithmically tunable. Second, we find examples where
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Fig. 3. The regulatory circuit of the GPCRs can act as a logarithmic sen-
sor. (A) Upon activation by ligand (c), the receptor (R) changes confor-
mation and activates a G protein (T ), which then break into an α and a βγ
subunit. The α subunit is responsible for downstream signaling, after
which, it recombines with a βγ subunit and recover the pool of G proteins.
(B) Activity of the GPCR system, (i.e., the concentration of α̂GTP) is loga-
rithmically tuned by k6

k4
, the effective allosteric constant in the system. The

logarithmic tuning breaks down when k4 is much slower than k6. In this plot,
k1 =1, k2 = 10,k3 = 10,k5 = 50,k6 = .01, and k4 ∈ ½10−2, 102�.
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allosteric proteins play a prominent role in processes where fold-
change detection has been proposed or established.
Shown in Fig. 5 are measured activity curves of some allosteric

proteins. We reproduced these measurements with original data
when available, or by retrieving data with Web Plot Digitizer. In
some instances the curves were originally plotted in linear scale,
and we have replotted them here in logarithmic scale to examine
whether they are logarithmically tunable. Although there is wide
literature on allosteric proteins, we present here examples where
quantitative measurements have been performed over a broad
range of ligand concentrations.
Not only do some allosteric proteins tune their response on

logarithmic scale, they can do so over a substantial range. One
striking example we found is the glycolytic enzyme PFK1, whose
response can be tuned over a remarkable 2,000-fold range of
ligand concentration. This tuning eventually fails at low concen-
trations, where leaky enzyme activity begins to appear. More ex-
amples are summarized in the table in Fig. 5G. Presented in the
table is the approximate range of ligand concentrations over which
allosteric proteins tune their response logarithmically. We found
examples across a wide range of biological processes including
metabolism, ion transport, neurotransmission, insulin signaling,
and olfaction.

In addition to evidence that some allosteric proteins operate
in the parameter regime where they are logarithmically tunable,
we find that they play a prominent role in systems where fold-
change detection has been proposed. Furthermore, in each ex-
ample, the allosteric proteins are coupled to feedback mechanisms,
suggesting that their capacity as a logarithmic sensor is functionally
used. We describe three examples here.

Bacterial Chemotaxis. Bacterial cells detect and track chemical
gradients in their environment. Mesibov et al. (13) first observed
that the bacterial motile behavior depended on fold changes in
attractant concentration. The fold-change detection was later
confirmed through elegant FRET experiments (15, 28, 34).
Structural studies have now established a physical basis for

MWC allostery in the aspartate-sensing Tar receptors (Fig. 5D)
(22, 35). Furthermore, the allosteric receptor is connected to a
well established feedback mechanism. Feedback is largely me-
diated by methylation and demethylation of the Tar receptors,
which yield precise adaptation (36–38).

Vision. Logarithmic response is well established in vision, in
particular in the context of dark adaptation in rod photorecep-
tors (5, 39). Light detection is mediated by the GPCR rhodopsin
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in retinal photoreceptor cells. Examining the rhodopsin regulation
network, we found two possible roles for allostery. First, recent
studies find evidence that GPCRs follow the MWC model, existing

in distinct conformational states, containing physically distant
regulatory sites, and forming oligomers (29, 40–43). Indeed, sev-
eral regulators tune activity curves of GPCRs on a logarithmic
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scale (Fig. 5E). Second, as described earlier, the regulatory net-
work of interactions between GPCRs and G proteins can give the
net effect of allosteric regulation (Fig. 3).
Moreover, the allosteric rhodopsin is coupled to a known feed-

back mechanism mediated by β-arrestin. Activation of rhodopsin
induces receptor phosphorylation and binding of arrestin, which
blocks further binding of transducin and results in adaptation to the
prestimulus state. The action of arrestin modulates k4 in Fig. 3A,
the regulatory step that facilitates logarithmic tuning of the GPCR
response curves (Fig. 3B).

Epidermal Growth Factor Signaling. The EGF receptor (EGFR) path-
way is a major signaling pathways in animal cells. Cohen-Saidon
et al. showed that upon ligand stimulation, single cells show a
precise fold-change response relative to the basal level, despite
large variation in the absolute magnitude of the response (9).
Recent evidence suggests that the EGFR is allosterically regulated
(30). The EGFR exists in monomeric and dimeric forms. Binding
of the ligand stabilizes the dimers, leading to activation of down-
stream effectors. It is proposed that modulation of dimerization
rate results in allosteric regulation, which produced logarithmic
tuning in the receptor activity (Fig. 5F).
Moreover, the allosteric receptor is upstream from various known

feedback mechanisms, including ubiquitylation and endocytosis of

receptors (44, 45), dephosphorylation of active receptors (46), and
feedback by ERK (47). Interestingly, one member of the EGFR
family, ErbB2 receptor, lacks a ligand-binding domain but can di-
merize with other receptors. Overexpression of ErbB2 has been
associated with therapy-resistant cancers (48), suggesting that dis-
rupting the allosteric regulation of the EGF receptors may play a
role in disease.

Discussion
In this study, we set out to search for a molecular implementation
of a logarithmic sensor that can mediate fold-change detection in
sensory systems. We identify that a ubiquitous class of regulation,
allostery, has the necessary properties to act as a logarithmic sen-
sor. Allostery has traditionally been thought as a mechanism for
generating cooperativity and implementing feedback in signaling
systems. Our analysis suggests that allosteric proteins can act as
logarithmic sensors. We find that the capacity for logarithmic
sensing is not dependent on the specific physical implementations
of allostery. Rather, this capacity arises from the basic feature of
allostery: the presence of an independent regulation to tune the
protein’s activity without altering the ligand-binding kinetics. It is
remarkable that the seemingly complex task of computing a loga-
rithm can be encoded within a single protein, and further that this
can be accomplished through such a pervasive form of regulation in
biological systems. Moreover, beyond proteins, allostery also ap-
plies to RNAs. For instance, there is recent evidence that ribos-
witch activity can be tuned via conformational selection (49). This
opens up the possibility of an RNA-based logarithmic sensor that
senses metabolite concentration.
When coupled with linear feedback, allosteric regulation can

produce fold-change detection (Fig. 4A). This logarithmic-feedback
circuit is an appealing architecture because feedback regulation is
another ubiquitous feature of biological systems, and raises the
questions of whether logarithmic sensing and the related phe-
nomenon of fold-change detection occurs more broadly in bio-
logical processes than is currently appreciated. For instance, in
glycolysis, PFK1 is inhibited by ATP and ADP, end products of the
pathway, producing a logarithmic-feedback circuit (Fig. 6A) (18).
We imagine that fold-change detection might be beneficial in
glycolysis to maintain sensitive metabolic activity across a broad
range of glucose concentrations. In another example, hemoglobin
is regulated by blood pH, in what is known as the Bohr effect (26,
50). High levels of carbon dioxide cause changes in blood pH,
which in turn regulate the activity of hemoglobin, producing a
logarithmic-feedback motif (Fig. 6B). We imagine that fold-change
detection might be beneficial for hemoglobin to maintain sensitivity
across a range of altitude, metabolic state, physical activity, life-
style, or body size, where oxygen level varies.
Therefore, beyond their commonly thought of roles as en-

zymes, transporters, it would be interesting to see whether allo-
steric proteins may also generally act as quantitative sensors,
adjusting detection on a logarithmic scale to maintain sensitivity
over a broad response range.
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