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SUMMARY

As we begin to design increasingly complex synthetic biomolecular systems, it is essential to develop

rational design methodologies that yield predictable circuit performance. Here we apply mathemat-

ical tools from the theory of control and dynamical systems to yield practical insights into the architec-

ture and function of a particular class of biological feedback circuit. Specifically, we show that it is

possible to analytically characterize both the operating regime and performance tradeoffs of an anti-

thetic integral feedback circuit architecture. Furthermore, we demonstrate how these principles can

be applied to inform the design process of a particular synthetic feedback circuit.

INTRODUCTION

A present challenge in synthetic biology is to design circuits that not only perform a desired function, but also

do so robustly. The difficulty in doing this arises in large part from the enormous amount of variability be-

tween both intracellular and extracellular environments (Elowitz and Leibler, 2000; Cardinale and Arkin,

2012; Paulsson, 2004; Swain et al., 2002; Lestas et al., 2010). Although it is becoming easier to quickly imple-

ment a given circuit architecture (Sun et al., 2013; Weber et al., 2011), ensuring that its performance is robust

to parameter variations is still a time-consuming and challenging task (Potvin-Trottier et al., 2016). As synthetic

circuits grow in size and complexity, it will be essential to develop a rational design methodology that allows

biological engineers to easily identify the important design constraints for a given circuit and determine

whether or not their desired behavior is feasible (Del Vecchio and Murray, 2015). We can draw inspiration

from the study of natural biological circuits, where cells are frequently confronted with a large amount of vari-

ability, yet exhibit robust behavior at the system level (Goentoro and Kirschner, 2009; El-Samad et al., 2005;

Cohen-Saidon et al., 2009; Barkai and Leibler, 1997; Yi et al., 2000; Chandra et al., 2011; Paszek et al., 2010).

In the design of electrical and mechanical systems this problem is often solved with the implementation of

feedback control (Aström and Murray, 2008; Doyle et al., 2013), where the dynamics of a process are

adjusted based on measurements of the system’s state with the aim of achieving some performance goals.

For example, in a commercial cruise control system an engineer may want the car to be able to rapidly track

whatever reference speed the user desires by measuring the car’s current velocity, while accelerating at a

safe rate and not being too sensitive to small disturbances (e.g., road conditions). Similarly, a biological

engineer may want the output concentration of a molecular species in a circuit to track an input signal

(e.g., an inducer) with dynamics that are robust to parametric variability in reaction rates and the inherent

noisiness of chemical kinetics (Hsiao et al., 2014).

Ourprimary focus here is a circuit architectureproposedbyBriat et al. (2016), knowas an antithetic integral feed-

back, that uses an irreversible bindingmechanism to implement feedback control in a biomolecular circuit. This

circuit immediately had a broad impact on the study of biological feedback systems, as strong binding is both

abundant in natural biological contexts (Kampranis et al., 1999; Hamilton and Baulcombe, 1999; Zhou andGot-

tesman, 1998) and appears to be feasible to implement in synthetic networks (Qian et al., 2018; Qian and Del

Vecchio, 2018; Franco et al., 2014; Nevozhay et al., 2009; Lillacci et al., 2018). For example, antithetic integral

feedback can be implemented using sense-antisensemRNApairs (Agrawal et al., 2018), sigma-antisigma factor

pairs (Lillacci et al., 2017), or scaffold-antiscaffold pairs (Hsiao et al., 2014).

The purpose of this circuit is to control a process, a simple version of which is composed of the molecular

species X1 and X2 with two control species Z1 and Z2 (Figure 1A). The goal is to set an external reference m

and have the concentration of the output species X2 robustly track it (Figure 1B).
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Figure 1. Characterizing Performance in the Antithetic Integral Feedback Circuit

(A) The circuit diagram for a class of antithetic integral feedback circuits, adapted from the model presented in Briat et al.

(2016). Here we take X1 and X2 as the process species we are trying to control and Z1 and Z2 as the controller species. One

notable addition is that we explicitly model degradation of the control species Z1 and Z2 at the rate gc. q1 and q2 represent

the interconnection between the process species and the control species, k represents the X1-dependent synthesis rate of

X2, and gp is the degradation rate of the process species. Finally, m acts as an external reference that determines

production of Z1 through which we would like to ultimately control the steady-state concentration of X2 and h is the rate at

which Z1 and Z2 irreversibly bind to each other.

(B) A representative plot of the type of behavior we expect from the circuit, where the concentration of X2 tracks a

changing reference m. We see that different cells have the same overall behavior, but with slight variations due to noise.

This plot highlights the performance characteristics of this particular implementation of the circuit. For example we see

that, when tracking the reference, X2 has some overshoot of the target (red), a period of time it takes to respond to

changes (blue), random fluctuations due to noise (yellow), and steady-state error (purple). Ideally, we would like to

have a rational methodology to tune the circuit-level parameters of (A) to predictably control the system-level

characteristics of (B).
The key property of this circuit is that it is able to implement robust perfect adaptation. This means that, at

steady state, the concentration of X2 will be proportional to the reference m (specifically, x2 = m/q2 on

average). Importantly, the steady-state value of X2 will be independent of every other parameter of the

network, implying that its steady-state behavior is robust. We will focus first on studying a deterministic

ordinary differential equation model of the circuit:

_x1 = q1z1 � gpx1; (Equation 1a)

_
x2 = kx1 � gpx2; (Equation 1b)

_z =m� hz z � g z ; (Equation 1c)
1 1 2 c 1

_
z2 = q2x2 � hz1z2 � gcz2: (Equation 1d)

Here q1, q2, and k are production rates; gp and gc are degradation rates for the process species and

controller species, respectively; h is the rate at which Z1 and Z2 sequester each other; and m is the reference

input that sets the synthesis rate of Z1. For simplicity we assume that X1 and X2 share the same degradation

rate gp, and likewise for Z1 and Z2 with respect to gc. Depending on the process being modeled, it may be

more realistic to the have heterogeneous and potentially nonlinear rates for each species; however, the

mathematical results are much simpler and easier to interpret in the setting presented here. We analyze

a particular circuit with heterogeneous process degradation in Olsman et al. (2018), and a more general

discussion of this problem is presented in Baetica et al. (2018).

Wewill refer to X1 and X2 as process species, and will focus in particular on X2 as the controlled output of the

circuit. We can think of Z2 as making measurements of X2, which are then propagated to Z1, which can indi-

rectly affect the production rate of X2 through X1. The use of lower-case letters for the species in Equation 1

indicates that we are referring to a deterministic quantity (later in the section Noise and Fragility Are Two

Sides of the Same Coin we will use upper-case variables to denote random variables).

The structure and content of this article is somewhat unconventional, in that we present both a non-tech-

nical treatment of some of the core results in the companion piece, Olsman et al. (2018), and also stand-

alone research results that are not discussed in detail elsewhere. The content of Olsman et al. (2018)
278 iScience 14, 277–291, April 26, 2019
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Figure 2. The Effects of Binding Rate on Dynamics

(A) Here we show simulations of the circuit in Equation 1 with k = q1 = q2 = gp = 1 h�1, gc = 0 h�1, and m = 100 nM h�1. This

leads to a value of a2/m = 10�2 nM�1 h�1. We vary h between 10�3 and 1 nM�1 h�1 and see that for small h the system’s

response is highly sensitive to the binding rate. Once h is in the regime described by Equation 3, its dynamics are

independent of h.

(B) A parametric plot showing this phenomenon, using the overshoot of the desired steady-state x�2 =m=q2 as a proxy for

system performance. The black curve is generated by varying h between 10�3 and 103 nM�1 h�1, demonstrating that the

overshoot becomes almost entirely invariant to h in the blue region where h > 10,a2/m. The colored dots correspond to

the parameters of the simulations in (A).
focuses on the application of classical tools in control theory to study the mathematical properties of the

antithetic integral feedback circuit, whereas the goal of this article is to outline practical guidelines that are

accessible to an audience interested in utilizing these theoretical results to inform future experimental work

in biological engineering.

In Briat et al. (2016), the authors assume that the controller degradation rate gc = 0 in Equations 1c and 1d,

which yield the robust precise adaptation mentioned earlier. Our analysis of circuit performance and

tradeoffs in the sections Circuit Performance Is Robust to Fast Binding and There Is a Performance Tradeoff

between Speed and Robustness makes the same assumption, and we also address the case of gc > 0 in the

section Controller Degradation Improves Stability but Introduces Steady-State Error. In the section

Antithetic Integral Feedback in a Synthetic Bacterial Growth Control Circuit we apply this analysis to study

a particular synthetic growth control circuit that makes use of antithetic integral feedback. Finally, in the

section Noise and Fragility Are Two Sides of the Same Coin we will investigate the effects of noise on

the circuit.

RESULTS

Circuit Performance Is Robust to Fast Binding

The most obvious parameter to investigate in the antithetic integral feedback system is the binding rate h.

To simplify our analysis, we will ignore controller species degradation for the time being (gc = 0 in Equa-

tion 1c) and analyze the effect of gc in later sections. Because binding is a bimolecular interaction, h is

the rate of association and has units of the form nM�1 h�1. As the binding of Z1 and Z2 at rate h in

Equations 1c and 1d encapsulates feedback in the system, we know that h cannot be too small. If binding

is sufficiently slow, it will be as if there is no feedback in the circuit at all. More generally, a small h corre-

sponds to a slow feedback action that tends to lead to a large overshoot of the desired steady state, as

can be seen in Figure 2A.

The question then becomes, how large should h be? Briat et al. (2016) in their original work on this system

observed that some sets of parameters lead to unstable behavior (which we discuss in greater depth in Sec-

tion Instability Arises from Production Outpacing Degradation), so it is important to investigate whether or

not a large h could ever destabilize the circuit. Ideally, we would like to find a regime of parameters where

the system’s behavior is easy to predict and we do not have to worry about fine-tuning h. It would be

possible to get a sense for the behavior of h by simulating a broad parameter sweep and analyzing the re-

sulting dynamics, whereas we find that it is possible to gain a precise understanding of the effects of h via

theoretical analysis (described in detail in Olsman et al., 2018).

Before we can analyze the effects of the binding rate on the circuit, we first need some notion of to what

quantity it even makes sense to compare h. If nothing else, this quantity must have the same units as h,
iScience 14, 277–291, April 26, 2019 279



which immediately rules out a direct comparison with any other rate parameter in Equation 1, as h is the

only association rate in the system. As m is the only other parameter that has units of concentration (spe-

cifically nM h�1), it must be involved in the comparison. Dimensional analysis can get us as far as noting

that a quantity of the form a2/m, with a taking units of h�1, would at least have same units as h. This is

as far as dimensional analysis alone can take us, because the other parameters in the system (q1, q2, k,

and gp) are all rates that have units consistent with a.

In Olsman et al. (2018), we find that a should take the form

a=
q1q2k

g2
p

: (Equation 2)

Although the proof of this result is somewhat technical, we can derive from it a simple guideline for what it

means to have h large enough. The aggregate quantity a describes the steady-state rate at which Z2 mol-

ecules are produced relative to the concentration of Z1. Characterizing the circuit in terms of a may yield

practical benefits, as it allows us to sidestep the problem of individually measuring each of the four rate

parameters in Equation 2. We will see in later sections that many important features of the circuit can be

written either in terms of the individual parameters in Equation 1, or in terms of a.

Combining these ideas, we can now state precisely both what it means for h to be large and what effect this

has on the circuit. We find that, although the behavior of the circuit is highly dependent on the value of all

other parameters in the network, it is insensitive to variations in h, so long as h[max(a,gp)a/m. As we will

discuss later, most of the interesting questions about stability and performance for the system arise when a

is at least comparable in scale to gp, so the relevant relationship between h and the rest of the parameters in

the system can be simplified somewhat to

h[
a2

m
: (Equation 3)

This Equation characterizes a separation of timescales between the production and degradation dynamics

of the system (captured by a and m) and the antithetic feedback reaction. Intuitively, so long as binding

is sufficiently fast, it does not affect the stability and performance of the circuit’s output, X2. This is

demonstrated in Figures 2A and 2B, where the system’s response becomes independent of h when

Equation 3 holds. Here we use the amount of relative overshoot of x2 (defined as xmax
2 =x�2 � 1) as a proxy

for characterizing the circuit’s behavior.

By simulating the circuit with a2/m = 10�2 nM�1 hr�1 as h varies logarithmically between

10�3�103 nM�1 hr�1, we see in Figure 2B that the behavior of the x2 is insensitive to h when it is sufficiently

large. The vertical line corresponds to h = 10,a2/m. One consequence of Equation 3 is that the steady-state

values of z1 and z2 (denoted by *) must have the relationship z�1[z�2. If measuring and comparing the rates

in Equation 3 is not feasible, it is possible to tell if a circuit described by Equation 1 is in the regime of strong

binding by simply comparing the concentrations of Z1 and Z2 at steady state.

We should emphasize that the circuit can still be functional when Equation 3 does not hold; however,

our analytic techniques yield less insight into what should be expected from the circuit in this regime.

It is also important to note that Equation 3 is not sufficient to guarantee good performance (a concept

into which we will delve more deeply in later sections). It merely implies that, once h is sufficiently

large, the qualitative behavior of the X2 (good or bad) will not be affected by varying it. We also

note that the dynamics of other species in the network, in particular Z1 and Z2, will be affected by vary-

ing h even in the strong binding regime. In the next sections, our analysis will focus on the parameter

regime where Equation 3 holds and study how the rest of the rates in Equation 1 affect the system’s

dynamics.
Instability Arises from Production Outpacing Degradation

A central question for all feedback systems is whether or not the closed-loop circuit is stable. In many en-

gineering applications, it can be the case that poorly implemented feedback control can destabilize an

otherwise stable process (Aström and Murray, 2008). This effect is quite salient in the antithetic integral

feedback circuit, which was shown to have unstable oscillatory dynamics (known as limit cycles) for some

parameter values (Briat et al., 2016). Before we can begin to consider how well a given set of parameters
280 iScience 14, 277–291, April 26, 2019
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Figure 3. Dynamics Can Be Either Stable or Unstable

Here we demonstrate how Equation 4 affects the dynamics of the circuit in Equation 1.

(A) This simulation uses k = q1 = q2 = gp = 1 h�1, gc = 0 h�1, m = 100 nM�1 h�1, and h = 10 nM�1 h�1. We see that x2 shows

some transient oscillatory behavior but ultimately adapts the steady-state value m/q2. As a = 1 h�1 and gp = 1 h�1,

Equation 4 holds and the system is stable.

(B) Now we run the simulation with the same parameters, except q1 = 3 h�1. This implies that a = 3 h�1, which tells us that

Equation 4 no longer holds and the system will become unstable. In this case, the instability takes the form of indefinite

oscillations. This figure is adapted from one presented in Olsman et al. (2018).
perform, we first need a guarantee that the corresponding dynamics have the baseline functionality of be-

ing stable. Ideally, we would be able to find system-level constraints that determine a prioriwhen the circuit

will be stable or unstable. Although there exist straightforward numerical methods to predict whether or

not a system with a given set of parameters is stable, it is substantially more difficult to derive general para-

metric conditions that characterize stability.

Take, for example, the relatively simple circuit described in Equation 1, which has seven free parameters.

Although it is straightforward to numerically simulate the circuit and investigate different parameter re-

gimes, it is not at all obvious at first glance how the circuit will perform for a particular set of parameter

values. We find that in the limit of strong binding and no degradation of z1 and z2, there exists a simple

relationship that determines stability. Using the same notation as in the section Circuit Performance Is

Robust to Fast Binding, we find that the system is stable if and only if a < 2gp (as shown in Figure 3).

This says that we need the net production rate in the circuit a to be slower than twice the degradation

rate gp. We can rewrite this result, using the fact that a = q1q2k=g
2
p, in the form

ffiffiffiffiffiffiffiffiffiffiffiffi
q1q2k

2

3

r
< gp: (Equation 4)

We note that the left-hand term is proportional to the geometric mean of all the production rates in the

circuit. This is another perspective from which we can observe that production needs to be, on average,

slower than degradation.

An interesting property of this Equation is that m and h are conspicuously absent. The lack of dependence

on h echoes the results we discussed in section Circuit Performance Is Robust to Fast Binding, where we

showed that the system’s performance is independent of the binding rate in the limit of large h. The fact

that the system’s stability does not depend on m makes sense because it is the only production rate in

the system with units of concentration, so it must set the concentration scale for the circuit. We should

expect that simply changing the units of concentration in the model should not affect stability. It then fol-

lows that varying m is analogous to changing the units of concentration, and consequently should not affect

stability and performance. We also find that the system is intrinsically stable (stable for any set of positive

parameters) when there is only one process species in Figure 1A, which we prove inOlsman et al. (2018). We

find that for the case of n > 2 process species (i.e., the system being controlled consists of species X1,.,Xn)

we can derive results analogous to Equation 4, implying that there is a qualitative difference performance

between n = 1 species and n R 2 species.
iScience 14, 277–291, April 26, 2019 281



To further investigate Equation 4, we will assume that both the process parameters (gp and k) and the

desired set point (determined by m/q2) are fixed. As we assumed that we are in the regime where h is large

enough to not matter, the only remaining parameter to tune is q1. We can interpret q1 as quantifying

the strength of interaction between the control species z1 and the process species x1. In this sense, Equa-

tion 4 tells us that there is a limit on how strong the connection between the controller and the process can

be. It is then natural to ask how varying q1 affects the circuits performance. To do this, we first need to define

the relevant system-level performance metrics.
There Is a Performance Tradeoff between Speed and Robustness

In the previous section we noted that, for a given set of parameters, there is a maximum value that q1 can

take such that the controller remains stable. Picking the rate q1 to be fast will speed up the response of

the circuit; however, if there is variability in q1 the circuit may inadvertently exceed the limit set by

Equation 4 and consequently become unstable. In this context, one way to characterize a circuit’s robust-

ness is to determine not only if it is stable but also if there are no small parameter changes that would result

in it becoming unstable. A robust circuit is one that is far from instability, whereas a fragile circuit will be very

near the stability boundary in Equation 4.

It is important to note that the notions of robustness and sensitivity discussed here equivalently capture

both the reference tracking behavior (i.e., the ability of X2 to adapt to m/q2) and rejecting disturbances

to modeling parameters (Aström and Murray, 2008). Although we phrase most of the results here and in

Olsman et al. (2018) in terms of reference tracking, all the statements about reference tracking have equiv-

alent interpretations in terms of disturbance rejection. We only chose to focus on reference tracking as it is

an easier behavior to visualize and intuitively understand. Intuitively if the output of a system is capable of

tracking a reference, then we can alternatively think of it as being good at minimizing the error between its

current state and its desired state. We can also think of this sort of error minimization as the ability to reject

disturbances to parameters. In other words, the ability of the output to robustly track some parameters (in

this case, m and q2) is closely tied to its ability to not track other parameters (i.e., reject disturbances).

These observations yield a tradeoff: in order for the response time of the circuit to be as short as possible q1

should be fast; however, this necessarily makes the circuit more fragile. This notion of robustness is distinct

from robustness of steady state, which is more commonly studied in biological contexts (Barkai and Leibler,

1997; Yi et al., 2000). The steady-state robustness is fairly easy to define, as it is simply the error between the

actual steady state of a system and a desired steady state, whereas this notion of fragility requires more

sophisticated mathematical tools and is generally difficult to solve for analytically. We discuss these theo-

retical methods in detail in Olsman et al. (2018), where we show that a good approximation of the fragility of

the system has the form

F =
2g3

p + q1q2k

2g3
p � q1q2k

=

1+
a

2gp

1� a

2gp

: (Equation 5)

An equivalent interpretation ofF is as quantifying the system’s worst-case amplification of disturbances. As

a sanity check we can see that, when we have equality in Equation 4 (i.e., q1q2k = 2g3
p), the fragility F = N

corresponds to the circuit becoming unstable. When q1q2k<2g
3
p,F increases monotonically as q1 increases.

If q1 = 0, thenF = 1 corresponding to no disturbance amplification (but also no control). We see in Figure 4A

that Equation 5 yields a tradeoff curve that concisely captures the relationship between F and q1.

The upshot of this characterization is that we can now precisely quantify the performance tradeoff between

speed and robustness. Equation 4 gave us a binary condition for stability, whereas Equation 5 provides a

more nuanced measure of the circuit’s performance. Figure 4B demonstrates the effects of this tradeoff on

the system’s dynamics. We see that, as the initial response time of the system decreases (q1 increases), the

systembegins to oscillate and takes amuch longer time to settle in to its steady-state value. These oscillations

are indicative of the system approaching instability, a topic we explore in more depth in Olsman et al. (2018).
Controller Degradation Improves Stability but Introduces Steady-State Error

So far we have neglected the effects of degradation on the control species z1 and z2, assuming that they are

only removed from the system by the antithetic binding reaction. Under this assumption, the results of the
282 iScience 14, 277–291, April 26, 2019
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Figure 4. A Performance Tradeoff between Response Time and Fragility

(A) Here we show a tradeoff curve demonstrating the relationship between response time (parametrized by q�1
1 ) and

fragility (as described in Equation 5). An ideal system would have both a fast response and be minimally fragile (i.e.,

robust), whereas this curve shows that given all other parameters the system only has so much freedom to simultaneously

optimize its performance.

(B) These trajectories correspond to parameters associated with the colored dots in (A), showing how fragility and

response time relate to the actual dynamics of the circuit. We see that the blue curve rises quickly, but is highly oscillatory

and takes a long time to settle. Conversely, the purple curve has a slow rise time, but is quite robust and settles quickly. In

each plot we vary q1 and use k = q2 = gp = 1 h�1, gc = 0 h�1, m = 100 nM h�1, and h = 10 nM�1 h�1. This figure is adapted

from the one presented in Olsman et al. (2018).
previous section tell us that the system is, in a sense, fundamentally constrained in its performance. We

might hope, then, that nonzero controller degradation (gc > 0) might give us an additional knob to tune

in designing antithetic integral feedback circuits.

This turns out to be precisely the case, as is shown in Figure 5. If all other parameters are held constant, the

control species degradation rate gc decreases the fragility of the system at the cost of introducing steady-

state error. Again assuming the limit of large h, we show inOlsman et al. (2018) that there is a simple expres-

sion for this error, which we denote by 3:

3=
m=q2 � x�2

m=q2
=

1

1+ a
gc

: (Equation 6)

We can think of 3as capturing the steady-state error of x2 relative to the desired set point we would expect

in the absence of controller degradation (m/q2). It is useful to think of controller degradation as adding

‘‘leakiness’’ into the feedback mechanism. Imagine a scenario where x2>m/q2. Ideally, this would cause

an increase in z2 that precisely compensates for the mismatch. This increase in z2 will reduce the amount

of z1 via antithetic feedback. If, however, z1 is also degraded, there will be two mechanisms through which

z1 is removed, namely, degradation and antithetic feedback. If we imagine a scenario in which gc is

extremely large, then every z1 molecule would likely be degraded before having a chance to be seques-

tered by a z2 molecule. If this were the case, then x2 could not possibly be using feedback to track the

set point m/q2, because there is effectively no way for the increase in z2 to affect the concentration of z1.

In Equation 6, we see that 3= 0 if x�2 =m=q2 (no error) and 3= 1 when x�2 = 0 (maximum error).

It is also possible to describe the fragilityF for the case where gc> 0. This expression ismuchmore complex

than the one presented in Equation 5, so we refer the reader to our analysis in Olsman et al. (2018) for de-

tails. The qualitative behavior of F is shown in Figure 5A, where increasing gc decreases fragility.

Combining these observations, we see that varying controller degradation introduces a tradeoff between

steady-state error and robustness. Increasing gc reduces F at the cost of increasing 3. Figure 5B demon-

strates this effect via simulations of Equation 1 with increasing values of gc. We see that the trajectory

with large controller degradation (purple) is far more stable than the trajectory with small degradation

(blue); however, the latter differs substantially from the original set point m/q2.
iScience 14, 277–291, April 26, 2019 283
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Figure 5. Controller Degradation Introduces Steady-State Error

(A) We see that controller degradation gc > 0 improves stability at the cost of introducing steady-state error. This tradeoff

curve is a parametric plot where gc is varied and Equation 6 is compared with a generalization of Equation 5 that

incorporates the effects of gc.

(B) Here we show the effects of the tradeoff in (A) on the dynamics of x2. The parameters are chosen such that, if gc = 0, the

system would be unstable. The trajectory with small gc (blue) is stabilized, but still has long-term oscillations indicative of

fragility, but has little steady-state error. The trajectory with large gc (purple) is extremely robust, but with large steady-

state error. We vary gc and use k = q2 = gp = 1 h�1, q1 = 2 h�1, m = 100 nM h�1, and h = 300 nM�1 h�1.

(C) In this tradeoff curve, we hold the error 3= 0.1 constant by varying both q1 and gc as a constant ratio. We now observe

that there is a tradeoff between fragility and leakiness, the latter being parameterized by gc. Intuitively, if gc is large, then

many copies of z1 and z2 are being degraded without ever being involved in the feedback process.

(D) We see that simulated trajectories display constant steady-state error, with less oscillatory behavior when gc is large.

(C and D) use the same parameters as (A and B), with the exception that q1 is no longer fixed. This figure is adapted from

the one presented in Olsman et al. (2018).
If it were the case that this error were simply a constant offset, then it could, in principle, be corrected for

after the fact. The issue, however, is that the error is highly parameter dependent, as can be seen from

Equation 6. If the goal is to ensure that the steady-state value of X2 is robust to variation in parameters,

this error term may undermine the whole purpose of the circuit. From this perspective, we can think of 3

as capturing the robustness of steady-state behavior of X2 to parametric variations. Ideally, we would

have some way to preserve the increased stability from controller degradation without suffering the con-

sequences of large error. Fortunately, this is possible if we vary not only gp but also the production rate q1.

Equation 2 tells us that a is proportional to q1. This means that, if we increase q1 to match an increase in gc, it

would be possible to hold the error in Equation 6 constant. This would not necessarily be very interesting if

this increase in q1 increased F by a corresponding amount; however, it turns out that we are still about to

decrease F while keeping the ratio q1/gc constant, as seen in Figure 5C. We see in Figure 5D this effect in

simulations, where each trajectory has a constant steady-state error of 3= 0.1; however, the trajectory with

larger gc values are significantly less oscillatory. This tells us that, if high turnover of Z1 and Z2 is not too

costly, it is possible to mitigate the downside of degradation while preserving its benefits.

An interesting property of the dynamics in Figure 5D is that the rise time and overshoot of each trajectory is

approximately the same. This is likely a by-product of the fact that the values of q1 in these simulations is
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large relative to the other production rates in the system. Once q1 is sufficiently large, the other k and q2

become the rate-limiting reactions, and marginal increases in q1 essentially act on a fast timescale that

does not have a large effect on the initial transient response of the system. The results of the sections There

Is a Performance Tradeoff between Speed and Robustness and Controller Degradation Improves Stability

but Introduces Steady-State Error focus on one-dimensional tradeoff curves, with the goal of presenting

simple parametric relationships that constraint the possible behavior of the system. This analysis is inher-

ently simplified, as it presents a low-dimensional slice of a high-dimensional space of parameter-system

performance relationships. In Baetica et al. (2018) a more general view of these relationships is presented,

focusing on surfaces in parameter space and their relationship to system performance.
Antithetic Integral Feedback in a Synthetic Bacterial Growth Control Circuit

The results presented so far have focused on the simple model of antithetic integral feedback presented

in Figure 1. This approach has facilitated our development of theoretical results that characterize some of

the important features of antithetic feedback as a mechanism for biological control. We will now make

use of the insights gained from the simplified model to study a particular synthetic bacterial growth con-

trol circuit. We show that the conceptual guidelines developed so far yield practical insight into the

design of this circuit. Specifically, we find that the incorporation of controller degradation can lead to

dramatically improved performance. The mathematical details of this analysis are presented in Olsman

et al. (2018); here will show simulation results and explain at a high level how the theory can help guide

circuit design.

A diagram of the circuit architecture is presented in Figure 6A, where growth control is achieved by regu-

lating the production of the toxin CcdB. Conceptually, if the intracellular concentration of toxin is propor-

tional to the total number of cells, then the population as a whole will converge to a steady-state size that is

less than the carrying capacity of the environment. The circuit uses a quorum-sensingmechanism (involving

the autoinducer N-Acyl homoserine lactone [AHL]) to implement the coupling between population size

and CcdB expression. The circuit described so far is capable of constant regulation but lacks an extracel-

lular mechanism through which we can control the population size (assuming that we do not want to be

directly tuning protein expression, for example, by altering the strength of ribosome-binding sites).

The desired control can be implemented with antithetic feedback. For simplicity we will focus our modeling

efforts on the particular mechanism of sense RNA-antisense RNA (asRNA) pairing; however, it would also

be feasible to implement feedback with sigma factor-antisigma factor binding or toxin-antitoxin binding.

An asRNA is one that has a complimentary sequence to amessenger RNA (mRNA) strand. This complemen-

tarity allows an asRNA to hybridize with an mRNA and block translation. By controlling the expression of

asRNA, it is possible to modulate how responsive CcdB expression is to changes in AHL concentration

and thus control the total size of the population. This architecture was originally proposed for experimental

purposes in McCardell et al. (2017), and a functionally similar circuit was tested in Scott et al. (2017). We

model this circuit with the following set of differential equations:

d

dt
½CcdB�= kp½mRNA� � gp½CcdB� (Equation 7a)

d
�

N
�

dt
N= rN 1�

Nm
� t½CcdB�N (Equation 7b)

d

dt
½mRNA�= kRGaN� h½mRNA�½asRNA� � gR ½mRNA� (Equation 7c)
d

dt
½asRNA�=m� h½mRNA�½asRNA� � gR ½asRNA�: (Equation 7d)

Quantities of the form [,] represent intracellular concentrations for each cell, and N represents the total

number of cells. N follows logistic dynamics with an additional death rate due to toxicity t proportional

to the concentration of [CcdB] per cell. [CcdB] is a protein that is toxic to the cell; [mRNA] is the correspond-

ing messenger RNA, the transcription of which we model as being induced by a quorum-sensing ligand

that is produced at a rate proportional to N; and [asRNA] is an asRNA that has a complementary sequence

to the CcdB mRNA, thus acting as a sequestering partner. The term Ga captures the gain between N and

mRNA induction mediated by the quorum-sensing molecule AHL. We can think of [asRNA] and [mRNA] as

representing Z1 and Z2, and the quantities [CcdB] andN as representing X1 and X2. This highlights the gen-

erality of the modeling framework in Figure 1A: because we did not make any assumptions about the
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Figure 6. A Synthetic Growth Control Circuit

(A) The circuit diagram for the dynamics described in Equation 7.

(B) Simulations of the growth control circuit without RNA degradation (solid lines) for various set points m (dashed lines). This architecture exhibits the precise

adaptation property, although the response is relatively slow and oscillatory.

(C) Here we see the same circuit simulated with RNA degradation. The response is much faster andmore robust; however, there is nonzero steady-state error

for each trajectory.

(D) Here we again simulate the circuit without degradation, but now vary kR. We see qualitatively similar performance tradeoffs to those in Figure 4.

(E) As before, we see that adding controller degradation yields a very fast and consistent response. For these particular parameters, the circuit can achieve

this performance with relatively little steady-state error. For all circuits we use the parameters Nm = 109 , r = 1 h�1, h = 20 nM�1 h�1, kp = 10 h�1, gp = 3 h�1,

Ga = 10�6 nM, and t = 4310�3 nM�1 hr�1. (B) uses kR = 0:1 h�1 and C uses kR = 10 h�1 and gR = 20 h�1.
particular nature of the underlying variables, we are able to analyze a circuit with extremely heterogeneous

underlying quantities (i.e., RNA, proteins, and cell population).

Figure 6B demonstrates how the growth control circuit adapts to various steady-state population levels

when there is no controller degradation (gR = 0). The steady state is set by varying m. When possible,

parameters for this model are taken from You et al. (2004). What is clear across all set points is that

the population first grows to carrying capacity before the circuit is activated. Intuitively, the blue curve

in Figure 6B has a large amount of asRNA that sequesters mRNA. Because of this, it takes longer to accu-

mulate enough mRNA to make CcdB and lower the population level. In contrast, the purple curve has

comparatively little asRNA, effectively increasing the rate at which CcdB can be produced. Qualitatively

similar long-term oscillatory behavior in a CcdB-based growth control circuit was observed in Balagaddé

et al. (2005).

As You et al. (2004) does not explicitly model transcription, we would ideally pick realistic transcription

and translation timescales for bacteria. If we were to naively assume that we could model asRNA and

mRNA as if they were directly analogous Z1 and Z2 in the section There Is a Performance Tradeoff be-

tween Speed and Robustness, i.e., neglecting controller degradation and assuming they are only

removed via strong binding, then we run into an issue. As the antithetic feedback mechanism modeled

in the section There Is a Performance Tradeoff between Speed and Robustness assumes that controller

degradation is negligible, we must use a very small mRNA synthesis rate to achieve stable dynamics,
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assuming all other parameters are fixed in a biologically plausible regime, even if binding is fast. This

leads to a slow circuit response and a large transient overshoot. This is demonstrated in Figure 6B, where

CcdB production is so slow that the population reaches carrying capacity before the circuit can become

active. In Figure 6D we see similar dynamics to those in Figure 4, where the circuit faces harsh tradeoffs

between speed and robustness.

We see from Figures 6C and 6E that good performance requires not only that RNA is removed via antithetic

feedback but also that it is degraded at a nontrivial rate. At the cost of a lack of precise adaptation, these

circuits display dramatically improved performance. In Figures 6C and 6E, the transient overshoot from Fig-

ures 6B and 6D has almost entirely disappeared, and each system adapts on a nearly identical timescale,

independent of m. Figures 6D and 6E compare performance for various values of kR in each system. Figure 6E

shows that the introduction of gR makes the system’s dynamics extremely robust to variations in kR over a

wide range of values. We can interpret gR as introducing a third tradeoff dimension, namely, steady-state

error. By allowing the system flexibility along this axis, its speed and robustness are greatly improved.
Noise and Fragility Are Two Sides of the Same Coin

Our analysis so far has assumed that the underlying circuit is perfectly deterministic, i.e., that its dynamics

can be modeled by a system of ordinary differential equations. Although these models serve as a good

starting point for studying many biomolecular systems, they do not capture the effects of noise on the sys-

tem. Although noise is not always an important feature of biological processes, it can sometimes drastically

alter the actual behavior of a circuit in a cell (for example, when certain molecules are at a low copy number)

(Paulsson, 2005; Lestas et al., 2010).

Here we will examine the steady-state variance of the output species X2 of the antithetic integral feedback

system when its dynamics follow a stochastic chemical reaction model and relate it to the performance of

the deterministic model Equation 1. The capitalization in X2 reflects that it is now a random variable,

whereas x2 in Equation 1b is deterministic. To simplify our analysis, we will return to the assumption that

there is no controller degradation (gc = 0). In Briat et al. (2016), the authors observed that there exist param-

eter values such that the deterministic model is unstable, but the average behavior of the stochastic model

is stable (i.e., each species, on average, adapts to the desired steady-state concentration). We might think

of each stochastic simulation representing a single cell’s dynamics, and the average representing the pop-

ulation-level behavior.

We find that, although this result regarding the mean behavior is correct, it does not tell the whole story. In

particular we show that, whereas the population average is generally well behaved, the population variance

can become large. In other words the population as a whole is predictable; however, there is a large

amount of cell-to-cell variability at any given time. In fact, it is the case that the noise scales in approxi-

mately the same way as the fragility of the system in Equation 5 (as shown in Figure 7A).

Formally, we derive an approximate expression for the steady-state Fano factor (the variance divided by the

mean) of X2 in the limit of fast binding:

Fano½X2�=Var½X2�
E½X2� z

gp

�
2q1k + kgp + 2g2

p

�
2g3

p � q1q2k
(Equation 8)

We see in Figure 7A that the variability of X2 increases as the deterministic system approaches instability.

This illustrates that there is a fundamental tradeoff such that the system can be either fast and noisy or slow

and accurate, mirroring the deterministic tradeoff described in Figure 4. We can get a sense for why this

happens by observing that the denominator in Equation 8 is the same as the denominator of Equation 5.

This tells us that we can expect each expression to grow in the same way as the respective denominators

approach 0. Thus there is an intimate connection between the sensitivity of the deterministic antithetic

integral feedback system, which corresponds to oscillatory behavior, and the sensitivity of the stochastic

antithetic integral feedback system, which corresponds to increased noise. To give a more concrete sense

for this relationship, we present representative simulation results that demonstrate this behavior.

In Figure 7B, we see that a slow and robust deterministic performance (in the sense described in the sec-

tion There Is a Performance Tradeoff between Speed and Robustness) corresponds to a stochastic model
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Figure 7. The Relationship between Noise and Robustness

(A) Here we see a general tradeoff between response time and noise (quantified by the Fano factor) of the antithetic

integral feedback network. This is analogous to the tradeoff in Figure 4A. The plot demonstrates the approximate
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Figure 7. Continued

behavior of Equation 8 (black), simulation results for the same approximate model (blue), and simulation results for the

fully nonlinear model without approximations (green).

(B) For q1 = 0:75 h�1, the deterministic and stochastic means converge with good performance; individual stochastic

trajectories are not very noisy.

(C) For q1 = 1:3 h�1, the deterministic and stochastic mean have damped oscillations; individual stochastic trajectories are

noisy.

(D) For q1 = 3:5 h�1, the deterministic model is unstable and oscillates, whereas the stochastic mean is stable, as

demonstrated in Briat et al. (2016). We see, however, that the individual trajectories oscillate with randomized phase. In all

simulations k = q2 = gp = 1 h�1, h = 10 nM�1 h�1. In A we use m = 10 nM h�1 to speed up simulations and m = 100 nM h�1

in the remaining panels. Mean trajectories and standard deviations are computed using N = 1000 trajectories.
with low noise. The left panel shows the mean behavior matching closely to the deterministic trajectory,

with a fairly small amount of noise throughout the simulations. The right panel displays some sample in-

dividual trajectories, which essentially look like we would expect: closely following the mean with small

deviations. If we look at Figure 7C, we see that the deterministic model and the mean of the stochastic

model converge to the reference quickly, with damped oscillations. Just as the fragility of the determin-

istic system is larger in the left panel, we see that the corresponding noise in the stochastic system is

much larger than in Figure 7B. Just as speed increased the fragility in the section There Is a Performance

Tradeoff between Speed and Robustness, it appears to increase the variability here. We note that these

results assume that the antithetic reactions constitute the only feedback in the system; recent work has

shown that additional feedback loops can potentially serve to reduce noise (Briat et al., 2018). In the Sup-

plemental Information we comment on the relationship between our results and those presented in Briat

et al. (2018).

Finally, Figure 7D demonstrates a parameter regime where the deterministic model becomes unstable.

In the left panel we see precisely the type of behavior described by Briat et al. (2016), where the

stochastic mean appears to converge despite deterministic instability. The right panel, however, dem-

onstrates that each individual trajectory is in fact exhibiting noisy oscillations, but with phases that are

randomized relative to one another. Each individual cell is unstable, but this instability averages out at

the population level. This highlights the importance of distinguishing between average and individual

behavior.
DISCUSSION

Although we could have, in principle, made some of the qualitative observation presented in this work from

simulations alone, it is important to emphasize the fact that these theoretical results not only formalize

numerical observations but also force us to state exactly what it is we are measuring. An important contri-

bution from Briat et al. (2016) was not only that the authors proposed a clever mechanism to implement

feedback control in biological contexts but also went to great effort to clearly state and prove the existence

of the fact that the circuit is capable of achieving what they claimed. Our work here and in Olsman et al.

(2018) is an attempt to pursue this line of reasoning and further characterize the qualitative and quantitative

behavior of this circuit architecture.

More generally, this theoretical perspective sheds light on a variety of nontrivial parameter relationships,

which we hope will allow researchers to avoid the need for brute-force parameter tuning when designing

future control circuits. This article was intended to provide a relatively non-technical description of the

work, and the interested reader can find a great deal more mathematical depth and generality in Olsman

et al. (2018). We believe that this an exciting time for biology, where theory and experiment can produc-

tively guide each other toward new and interesting directions of inquiry.
LIMITATIONS OF STUDY

An important technical caveat is that the results presented in this article are derived with respect to lin-

earizations of nonlinear circuits. A more technical discussion of the benefits and limitations of this

approach is presented in Olsman et al. (2018); however, the general takeaway is that the linearized theory

gives a rigorous treatment of how a circuit behaves near its steady-state values, often referred to as local

behavior, much in the same way that the derivative describes the local behavior of a function near a

particular point.
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Because the goal of a control system is to regulate the dynamics of a process, it is often sufficient to under-

stand the behavior of the system in the local neighborhood near the equilibrium to which we would like the

system to adapt. However, it is worth noting that the global behavior on nonlinear systems can sometimes

be substantially different from that of its linearization. This appears not to be an impediment for the results

presented in this article, as the linearized theory does well to predict the qualitative behavior of nonlinear

simulations; however, it is important to make explicit the assumptions that underlie our results. The upshot

of pursuing a linearized theory is that there is a broad array of theoretical tools that have been developed to

analyze linear systems, and they are both more general and easier to use than most results for nonlinear

systems. A more general perspective on the role of linearization in systems biology is presented in Malle-

shaiah and Gunawardena (2016).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.04.004.
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Analysis of Stochastic Systems

In this section we derive the approximate expression for the Fano factor of the output species
in a stochastic antithetic integral feedback system with two process species. In the following
we start from the chemical reaction network description of the antithetic integral feedback sys-
tem (Gillespie (1977, 2000); Munsky and Khammash (2006)), write down the chemical master
equation for the stochastic system, and perform approximations with justifications to obtain an
expression for the Fano factor of the output species. The approximation used is mathematically
the same as the so-called linear noise approximation or first order system size expansion (Pauls-
son (2005)).

We describe the biochemical reactions of anthithetic integral feedback system with two pro-
cess species:

∅
µ
−→ Z1 Z1

θ1
−→ Z1 + X1 X1

k
−→ X1 + X2 X2

θ2
−→ X2 + Z2

X1
γp
−−→ ∅ X2

γp
−−→ ∅

Z1 + Z2
η
−→ ∅.

If we assume infinitely strong binding of the anthithetic integral reaction, then limit η → ∞
holds. Hence, at any time, only one of species Z1 and Z2 can be non-zero. If both species are
non-zero, then they sequester each other infinitely fast through reaction Z1 + Z2 → ∅ until one
of them becomes zero. Therefore, we can define variable Z = Z1 − Z2, which has a one-to-one
correspondence to species Z1 and Z2 counts, where positive Z indicates counts of Z1, and negative
Z indicates counts of Z2.

With this simplification, the dynamics of the stochastic anthithetic integral feedback system
can be described by a continuous-time Markov chain (CTMC) over the counts of species Z, X1
and X2 using the following master equation dynamics Del Vecchio and Murray (2015):

ṗ(x1, x2, z) = µ(p(x1, x2, z − 1) − p(x1, x2, z))
+ θ1 max{z, 0}[p(x1 − 1, x2, z) − p(x1, x2, z)]
+ kx1[p(x1, x2 − 1, z) − p(x1, x2, z)]
+ θ2x2[p(x1, x2, z + 1) − p(x1, x2, z)]
+ γp[(x1 + 1)p(x1 + 1, x2, z) − x1 p(x1, x2, z)]
+ γp[(x2 + 1)p(x1, x2 + 1, z) − x2 p(x1, x2, z)],

(1)

where p(x1, x2, z; t) denotes the probability for the system to have Z = z, X1 = x1, and X2 = x2 at
time t. Here we use the convention that p(x1, x2, z) = 0 whenever x1 < 0 or x2 < 0. Note that z
denote the difference between count of species Z1 and Z2, so it can take negative values.
Preprint submitted to Elsevier March 27, 2019



We observe that all the terms on the right hand side of equation (1) are linear, except for the
max{z, 0} term. We can see this more clearly if we consider the first moment equation.

If we consider the steady state master equation, we set the left hand side to 0 and we apply∑
x1,x2,z x1 with the sum over all x1, x2 ∈ N, z ∈ Z, then we obtain that

θ1E(Z|Z ≥ 0)P(Z ≥ 0) = γpEX1

Similarly, if we apply
∑

x1,x2,z x2, and
∑

x1,x2,z z, we get

kEX1 = γpEX2 µ = θ2EX2.

The term that prevents us from solving this set of linear equations for the first moments is the
max{z, 0} term, which results in the probability for Z to be non-negative in the moment equations.

Therefore, we make a second assumption that Z ≥ 0 with probability 1 at steady state. This
means Z2 is zero with probability 1 and this represents a good approximation if the system is
stable, without Z1 oscillating to a very low count.

Under this assumption, we then obtain the linear equation:

θ1EZ = γpEX1.

Similarly, if we apply sum
∑

x1,x2,z x1z to the master equation, we obtain a system of linear
equations for steady-state moments of both the first and the second order terms. As the system
of equations becomes cumbersome to solve by hand, a Mathematica script was written to au-
tomatically derive and solve the moment equations. Solution gives the Fano factor of x2 as the
following:

Var X2

EX2
=
γp(2θ1k + kγp + 2γ2

p)

2γ3
p − θ1θ2k

. (2)

As γp → ∞, we obtain an additional simplification

Var X2

EX2
∼ 1 +

k
2γp

.

It should be noted that while the Fano factor result derived above are the same as the recent
results in Briat et al. (2018), the method of derivation and the insights that can be obtained are
different. Where Briat et al. (2018) derived results using moment invariants from the chemi-
cal master equation of the full system without the large η assumption to highlight the invariant
properties of the antithetic integral feedback system, we used the large η assumption to derive
a simplified chemical master equation equation (1) that highlights the almost-linear property of
the system. It further suggests that the only nonlinearity, max{z, 0}, which acts like a saturation
effect, is the central nonlinearity that differentiates the full model of antithetic integral feedback
from its linearization. We mean this in the sense that, when the system is far from saturation, the
linear and nonlinear models exhibit the same behavior. The linearization appears to break down
when Z frequently becomes negative.

On a more philosophical level, we note that both our result here and the result in Briat et al.
(2018) can be calculated by brute-force using the linear noise approximation Paulsson (2005),
however the specific derivations and arguments here and in Briat et al. (2018) provide insight
about the system beyond the resulting equation.
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