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SUMMARY

Feedback regulation is pervasive in biology at both
the organismal and cellular level. In this article, we
explore the properties of a particular biomolecular
feedback mechanism called antithetic integral feed-
back, which can be implemented using the binding
of two molecules. Our work develops an analytic
framework for understanding the hard limits, perfor-
mance tradeoffs, and architectural properties of this
simple model of biological feedback control. Using
tools from control theory, we show that there are sim-
ple parametric relationships that determine both the
stability and the performance of these systems in
terms of speed, robustness, steady-state error, and
leakiness. These findings yield a holistic understand-
ing of the behavior of antithetic integral feedback and
contribute to amore general theory of biological con-
trol systems.

INTRODUCTION

One of the central goals of systems biology is to gain insight into

the design, function, and architecture of biomolecular circuits.

When systems biology emerged as a field, there was a focus

on the precise measurement of parameters in canonical path-

ways, for example, those that govern glucose metabolism Rizzi

et al. (1997) and developmental signaling Lee et al. (2003);

Schoeberl et al. (2002). As both our understanding of these path-

ways and our quantitative measurements improved, it became

apparent that many of the underlying circuit parameters are sub-

ject to large amounts of variability, despite the circuit’s overall

performance being robust Goentoro and Kirschner (2009); Shi-

nar et al. (2007); El-Samad et al. (2005); Barkai and Leibler

(1997). These observations led to the important insight that bio-

logical networks have evolved sophisticated feedback control

mechanisms that confer robustness, similar to those developed

for classical engineering systems Chandra et al. (2011); Yi et al.
(2000); Shimizu et al. (2010); Muzzey et al. (2009); Hancock

et al. (2017). To this end, understanding the architecture and

constraints of these regulatory processes is essential both to as-

sessing the range of biological functions that they can implement

and to building functional synthetic systems Szekely et al. (2013);

Stelling et al. (2004); Adler et al. (2017).

For many systems, the key to achieving robust performance is

feedback control, which can provide robustness to both external

noise and disturbances and to internal system variability Ferrell

(2016); El-Samad et al. (2002); Yi et al. (2000); Aström andMurray

(2008). When the system undergoes a change, such as an

external disturbance or a variation in parameters, feedback

can ensure that the system returns to its desired steady state

with a small error Aström and Murray (2008). Additionally, feed-

back control can stabilize and speed up unstable or slow pro-

cesses Ma et al. (2009); Chandra et al. (2011); Stein (2003). How-

ever, feedback must be correctly designed and tuned, as it can

inadvertently amplify noise and exacerbate instability Del Vec-

chio and Murray (2015); Aström and Murray (2008). Despite

some limitations, feedback control is ubiquitous in natural bio-

logical systems, where it serves to regulate diverse processes

such as body temperature, circadian rhythms, calcium dy-

namics, and glycolysis Werner (2010); Rust et al. (2007); El-Sa-

mad et al. (2002); Chandra et al. (2011); Ferrell (2016).

There are a variety of circuit architectures capable of imple-

menting feedback control in a biomolecular network. However,

the time scale and dynamic range of their response can vary

greatly depending on implementation details, such as whether

the circuit relies on gene regulation Cohen-Saidon et al. (2009),

post-translational modification Barkai and Leibler (1997), or

RNA interactions Agrawal et al. (2018). Similarly, some circuits

are robust over a broad range of inputs Sourjik and Wingreen

(2012), while others may have a more modest functional range

of response Goentoro and Kirschner (2009).

A particularly interesting class of biological control circuits was

recently proposed by Briat et al. (2016). The authors showed that

feedback implemented with an antithetic bimolecular mecha-

nism is equivalent to integral feedback control Aström and Mur-

ray (2008), which guarantees perfect steady-state adaptation of

the output of a network to an input signal Ferrell (2016). For

example, an endogenous biological system that uses antithetic
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Figure 1. The Antithetic Integral Feedback

Network

(A–C) (A) Stable dynamics of an antithetic integral

feedback system, where the output (solid line)

precisely adapts to a reference signal (dashed

line). (B) Unstable dynamics of the same circuit,

where the system is now in a parameter regime

that results in sustained oscillations that never

converge to the desired reference point m =q2. (C) A

class of antithetic integral feedback networks. This

general model has two control species, Z1 and Z2,

and n process species. The two controller species

are subject to a reaction with binding rate h.

Additionally, we assume that the binding of the two

controller species is much faster than their un-

binding. The process species production rates are

denoted as q1; q2, k1;.; kn�1. For simplicity, the

process species degradation rate gp is assumed

to be equal for each Xi, as is the controller species

degradation rate gc. This class of networks is

defined by a simple set of possible processes

where each species is only involved in the pro-

duction of the next species.
integral feedback involves the binding of sigma factor s70 to anti-

sigma factor Rsd Jishage and Ishihama (1999). Examples of syn-

thetic biological systems that employ antithetic integral feed-

back include a concentration tracker Hsiao et al. (2015);

Franco et al. (2014), two bacterial cell growth controllers McCar-

dell et al. (2017), and a gene expression controller Annunziata

et al. (2017). Recent work has shown that antithetic integral con-

trollers can be implemented in a variety of in vivo circuits, using

both RNA and protein-based mechanisms Huang et al. (2018);

Kelly et al. (2018); Lillacci et al. (2017).

While integral control is a powerful tool, its stability and perfor-

mance are not guaranteed to be well-behaved. Even if both the

controller and the network being controlled are stable, their

closed-loop dynamics may be either stable (Figure 1A) or unsta-

ble (Figure 1B). If the closed-loop system is stable, performance

can be characterized bymetrics such as tracking error, response

time, leakiness, and sensitivity to disturbances. Although these

metrics can be optimized individually, they can rarely all yield

good results simultaneously because of the constraints imposed

by performance tradeoffs. These hard limits have been studied in

a variety of contexts, for example, in general stochastic biolog-

ical control systems Lestas et al. (2010) and in the particular

context ofmetabolic control in the yeast glycolysis systemChan-

dra et al. (2011); Hancock et al. (2017). Though the original work

from Briat et al. (2016) proves a variety of general properties of

the antithetic integral feedback circuit, such as ergodicity and

the existence of both stable and unstable dynamics, the precise

relationship between low-level circuit parameters and high-level

system performance remains an open question.

We present here an analytical treatment of stability, perfor-

mance tradeoffs, and hard limits in a class of antithetical integral

feedback circuits, graphically represented in Figure 1C. Specif-

ically, we analyze circuits where the process being controlled

consists of a chain of reactions with linear rates such that the

production Xi is proportional to the concentration of Xi�1 and

each Xi undergoes degradation at a rate that is proportional to
50 Cell Systems 9, 49–63, July 24, 2019
its own concentration. The antithetic feedback interaction is an

irreversible bimolecular reaction which occurs at a rate propor-

tional to the concentrations of both an actuator species Z1 and

a measurement species Z2, each of which may also undergo

degradation independent of their pairwise binding. The analysis

we present here is of a linearized model of the system, which re-

flects a conscious decision to favor tractability over generality.

Notably, however, this simplification also focuses our analysis

on the control problem most relevant to biological systems.

Though, most systems we desire to control are not truly linear,

the most basic nature of feedback control is to keep a specific

property of a system near an equilibrium point. Consequently,

these systems often behave as if they were linear because the

dynamics of interest are those of the system responding to dis-

turbances around their set point, which is the physical realization

of the core mathematical assumption underlying the linearized

analysis of nonlinear systems.

While many biomolecular circuits of interest are too complex

to yield clear theoretical results that describe system-level dy-

namics and performance, we show in Linear Stability Analysis

that a class of antithetic integral feedback networks is amenable

to theoretical analysis using techniques from control theory. In

particular, we find that there exists an analytic stability criterion

for a class of antithetic integral feedback systems (described in

Figure 1C). This stability criterion gives rise to performance

tradeoffs, for example, between speed and sensitivity, since

fast-responding controllers are intrinsically less robust. We

prove these results both in the case where there is no controller

degradation (Performance Tradeoffs and Hard Limits), as in the

model from Briat et al. (2016), and in the more biologically real-

istic context where there may be such degradation (The Effects

of Controller Species Degradation) Qian and Del Vecchio (2018).

Though we determine many different classes of tradeoffs for the

circuit, we find that they can all be viewed as different aspects of

Bode’s integral theorem, which states a conservation law for the

sensitivity of feedback control systems Aström and Murray



(2008). We also provide a less technical description of these re-

sults, as well as an analysis of noise in the system and simula-

tions of synthetic circuit performance, in a companion piece

Olsman et al. (2019).

These theoretical tools provide novel insight into both the anal-

ysis of endogenous biological systems and the design of syn-

thetic systems, which we demonstrate by applying our results

to a synthetic bacterial growth control circuit in A Synthetic

Growth Control Circuit. Finally, we demonstrate in Controlling

Autocatalytic Processes that it is possible to develop control

architectures that will stabilize an otherwise unstable chemical

reaction process. This result points toward new application do-

mains for antithetic integral feedback controllers, such as auto-

catalytic metabolic networks, that have yet to be explored in

detail.
RESULTS

Our goal here will be to develop a mathematical framework to

investigate the general constraints that shape the structure of

the closed-loop antithetic integral feedback network. For the

sake of clarity, we focus the results on the simplest examples

of a network regulated by antithetic integral feedback, however,

many of the results presented in this section generalize to a

broader class of systems (e.g. the case with more network spe-

cies and the case with controller degradation). While our analysis

is by nomeans completely generalizable, it does give insight into

a class of linear processes and corresponding nonlinear pro-

cesses for which linearized dynamics do well to capture the

circuit’s behavior near equilibrium. We discuss in the Method

Details section ‘‘Motivation for linearized analysis of nonlinear

systems’’ both the benefits and the limitations of our linearized

approach to modeling and analysis.
Model Description
We first describe the simple antithetic integral feedback model

proposed by Briat et al. (2016) with two control species (Z1

and Z2) and two species in the open-loop network (X1 and

X2), which corresponds to the case of n= 2 in the general cir-

cuit diagram presented in Figure 1C with gc = 0. In the control

theory literature the network being controlled is often referred

to as the process, a convention we will use in the rest of

the paper.

Wemodel the full closed-loop network using the following sys-

tem of ordinary differential equations:

_x1 = q1z1 � gpx1; (Equation 1a)

_x2 = kx1 � gpx2; (Equation 1b)

_z1 = m� hz1z2; (Equation 1c)

_z2 = q2x2 � hz1z2: (Equation 1d)

As a convention, we will use uppercase letters to denote

species in the circuit and lowercase letters to denote the corre-

sponding variables in the models throughout the paper. The

rates k and gp are production and degradation rates that are in-
ternal to the process. The parameters q1 and q2 are production

rates that provide an interface between the process and the

controller. An external reference inducer m determines produc-

tion rate of Z1, and the two control species Z1 and Z2 interact

with each other at the rate h.

While realistic models of biological circuits often have both

more complex interactions and many more states, this model

captures much of the important structural information about

the antithetic integral feedback system. In particular, Briat

et al. (2016) found that the network defined by Equation 1 imple-

ments the precise adaptation of X2 via integral feedback, as

shown by the following relationship:

_z1 � _z2 =m� q2x20ðz1 � z2ÞðtÞ= q2

Z t

0

�
m

q2
� x2ðt0Þ

�
dt0:

(Equation 2)

This ensures that, if the system is stable (i.e., _z1 � _z2/0),

then at steady state (denoted with a *) x�2 = m=q2. The para-

metric conditions that guarantee stability are not, however,

obvious at first glance. Briat et al. (2016) showed general alge-

braic conditions that prove the existence of both stable and

unstable dynamics of the linearized antithetic integral feed-

back system (using Descartes’ rule of sign), however, it is

not trivial to use their methods to explicitly describe stability

in general.

We find that, in the limit of strong binding (large h), there is a

simple closed-form criterion for system-level stability. Later,

we will show that a one-state network is intrinsically stable

for all parameters, and that there exists a simple stability crite-

rion for the general class of networks with many states repre-

sented in Figure 1C. For the analysis, we assume both that a

set of process parameters (k and gp) and a desired set point

(determined by m and q2) are given, and we study how stability

and performance relate to the rest of the control parameters

(q1 and h).
Linear Stability Analysis
In this section, we derive an analytic criterion for the stability of

the particular class of antithetic integral feedback networks

described in Figure 1C. For simplicity, we assume strong bind-

ing of the controller species (which we define mathematically

later in the section). A key difficulty in studying antithetic integral

feedback is the nonlinear term hz1z2 that mediates feedback in

Equations 1c and 1d. Though there exist techniques to study

nonlinear feedback systems, there are far more general tools

available to study linear ones. While analysis of the linear sys-

tem does not give guarantees about global behavior, it does

allow us to characterize the local stability of the steady state

to which we would like X2 to adapt. We present further discus-

sion of the broader role of linearized analysis in studying feed-

back control systems and the benefits and limitations that

come along with it in the Method Details section ‘‘Motivation

for linearized analysis of nonlinear systems’’. Here, we linearize

the antithetic integral feedback network around the point

x�1 =
mgp

q2k
; x�2 =

m

q2
; z�1 =

mg2
p

q1q2k
; z�2 =

q1q2k

hg2
p

;
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the nonzero steady-state values derived from, Equation 1 to

derive the following dynamical systems:

_x=Mx;

x =

266664
x1
x2
z1
z2

377775;M=

266664
�gp 0 q1 0
k �gp 0 0
0 0 �a �b=a
0 q2 �a �b=a

377775; (Equation 3)

where a= q1q2k=g
2
p and b = hm. We can think of a as represent-

ing the open-loop rate at which Z2 molecules are produced from

each Z1 molecule, and b as representing the linearized feedback

strength, as it quantifies the linearized rate at which Z1 is annihi-

lated by Z2.

In general, stability of linear systems is determined by

the sign of the real parts of its eigenvalues. If they are all

strictly negative, then the dynamical system is stable and

the system will converge to the equilibrium point. Ideally, we

would be able to directly compute the eigenvalues of M;

however, this computation corresponds to finding the roots

of a fourth-order polynomial pðsÞ = detðsI� MÞ. While this is

difficult to do in general, it is possible to study stability by

finding what has to be true of the parameters for the system

to have a pair of purely imaginary eigenvalues, which

characterizes the boundary between stable and unstable

behavior. We find that, in the limit of strong binding

(specifically h[maxða; gpÞ,a=m), M will have the purely

imaginary eigenvalues l = ± iu when u = gp =
ffiffiffiffiffiffiffiffiffi
q1q2k
2

3

q
. More

generally, we find that the criterion for stability of the

closed-loop antithetic integral feedback circuit described in

Equation 3 is ffiffiffiffiffiffiffiffiffiffiffiffi
q1q2k

2

3

r
<gp; (Equation 4)

a relationship we refer to as the production-degradation

inequality (proved in The Stability Criterion). In Olsman et al.

(2019), we expand on the role of h and how it may affect design

decisions.

This implies that the closed-loop (i.e., all parameters in Equa-

tion 1. have positive values) system will be stable so long as the

degradation rate is larger than a constant that is proportional to

the geometric mean of the production rates ð ffiffiffiffiffiffiffiffiffiffiffiffi
q1q2k

3
p Þ. We note

that, in this strong binding limit, Equation 4 is independent of

the controller variables m and h. Thus, this relationship tells

us that stability is purely a function of the parameters

describing the process and its connection to the controller,

and is independent of the controller itself. Intuitively, the degra-

dation rate sets the rate of adaptation of X1 and X2, so Equation

4 tells us that, so long as the species have a rate of adaptation

that is faster than the rate of change in production, the system

will be stable.

Through a more technical argument (also in The Stability

Criterion), we find that a generalized system with a chain of

n process species has a production-degradation inequality

of the form
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1q2

Qn�1
i = 1 ki

Un

n+1

s
<gp; (Equation 5)

where Un is a constant that is only a function of the number of

process species. When the system has purely imaginary eigen-

values, each species will oscillate at the frequency

u= tan
� p

2n

�
gp:

For n= 1 we get u = tanðp=2Þgp = N, corresponding to an

intrinsically stable system (i.e., it cannot oscillate or become

otherwise unstable). At n= 2 we find u = gp, so the frequency

of oscillation is equal to the process degradation rate. Since

tanðp=ð2nÞÞ is a decreasing function of n, the frequency of oscil-

lation will monotonically decrease as the system grows

(assuming a fixed value of gp).

Rearranging Equation 5, we get the inequality

a<Ungp;

which says that the degradation rate gp sets a bound on how

large a can be while still maintaining stability.

For simplicity, the results so far focus only on the strong

binding regime. However, we show in The Stability Criterion

that there are also tractable and interesting results in the

regime of weak feedback (h small). The results have a form

similar to that of the strong binding limit, however, the direction

of the inequality is reversed. The stability condition for weak

feedback is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Unq1q2

Qn�1
i = 1 ki

b

n�1

s
>gp:

One interpretation of these results as a whole is that stability is

achieved when either feedback or open-loop process produc-

tion are sufficiently fast, but not when both are.

Performance Tradeoffs and Hard Limits
While Equation 4 gives us a binary condition that determines sta-

bility, it does not directly tell us about the overall performance of

the system. We know when the system becomes unstable, but it

is unclear how the system behaves as it approaches insta-

bility. Let

M = 1� q1q2k

2g3
p

;

which quantifies how far the system is from becoming unstable

and which we will refer to as a stability measure of the system.

For simplicity the analysis here will focus on the n= 2 species

case; however, the results naturally generalize for arbitrary finite

n. From Equation 4,M= 0 implies instability, and the largerM is,

the further the system is from becoming unstable. Intuitively it

seems that the system should become increasingly fragile as

M approaches zero. Conversely, we can increase M by

decreasing the production rates q1, q2, and k, but this will slow

down the dynamics of the system and could potentially hurt

performance.



BODE’S INTEGRAL THEOREM AND THE ANATOMY OF A SENSITIVITY FUNCTION

∥S∥∞

The Sensitivity Function. The sensitivity function for a system, with simulations of reference tracking dynamics for various

inputs. We see that when jSðiuÞj<1, the system has small error and performs well (blue and green). At the peak jSðiuÞj=
jjSjjN (red), we see that the output magnitude is not only amplified, but also phase shifted such that it is almost exactly out

of sync with the reference. At high frequencies (purple), the reference is changing so quickly that the system can barely

track it.

The primary goal of any control system is to ensure that a process has a desirable response to an input signal, while minimizing the

effect of external disturbances (such as noise and systematic modeling errors). While we often think of the time evolution of the full

state of a dynamical system xðtÞ, it is often useful to study the input-output relationship of a dynamical system using the (one-sided)

Laplace transform

XðsÞ=
Z N

0

xðtÞe�stdt;

where it becomes straightforward to mathematically analyze the input-output relationship of a given process.

We call functions that describe the input-output response of a system in the Laplace domain transfer functions, and in particular

the transfer function between a reference and the output error of a system is the sensitivity function of a system SðsÞ. If we take

yðtÞ as the output state of the system (in the antithetic integral feedback circuit yðtÞ = x2ðtÞ), we denote the Laplace transform of the

output YðsÞ. We can similarly define an input or reference signal rðtÞ (corresponding to m) with a corresponding transformed signal

RðsÞ. We then define the error of the closed-loop system as EðsÞ = RðsÞ� YðsÞ, and ask how large the error of the system will be

when tracking a given reference. This is given by the function

SðsÞ = EðsÞ
RðsÞ=

1

1+PðsÞCðsÞ ;

where PðsÞ and CðsÞ are the transfer functions for the open-loop process and controller, respectively. The loop transfer function is

then the product PC, which describes the open-loop behavior of the full control system. If there exist right-half plane poles of PC,

which is to say values of s=pk such that ReðpkÞ>0 and PCðpkÞ = N, then those poles correspond to unstable eigenvalues of the

open-loop system.

Cell Systems 9, 49–63, July 24, 2019 53



Intuitively, when the magnitude of this function jSðsÞj is small, then there will be a small tracking error between the reference signal

rðtÞ and the output yðtÞ. Conversely when jSðsÞj is large, then there is a large tracking error. If we assume rðtÞ = AsinðutÞ, then we

can study the frequency response of the system jSðiuÞj to a sinusoidal input with frequency u.

jSðiuÞj provides a way to measure system robustness, by quantifying how well a system attenuates errors to a given input.

The worst-case robustness can be described by the maximum value of jSðiuÞj, denoted jjSjjN. Ideally we would have

jSðiuÞj � 1 for all u. However, a deep result known as Bode’s integral theorem (proved in Bode (1945)) states that, if S is a stable

rational transfer function with relative degreeR2 (the denominator polynomial has degree that is at least two more than that of the

numerator), then the following is true of the closed-loop response:Z N

0

logðjSðiuÞjÞdu=p
X
k

ReðpkÞ: (Equation 6)

This implies that to reduce error in one frequency range, it must be increased elsewhere. This phenomenon is known as the wa-

terbed effect, and sets a fundamental limitation on the performance of any feedback control system. Bode’s result was an impor-

tant early development in control theory, as it helped to formalize the general notion that feedback control problems can be viewed

from the perspective of shaping of a system’s sensitivity. In the special case where PC has no right-half plane poles (i.e., the open-

loop system is stable), we get the simpler relationshipZ N

0

logðjSðiuÞjÞdu= 0: (Equation 7)
To analyze this problem, we will study the sensitivity function

SðsÞ, which is the transfer function between the reference signal

and the output error of the system Aström and Murray (2008).

The sensitivity function is described in greater detail in the

box above.

Though there are many different ways to characterize robust-

ness, generally we consider a system to be robust if there are no

small changes in parameters that would cause it to become

unstable. A mathematically equivalent interpretation is that a

system is robust when its worst-case error while tracking refer-

ences (i.e., the maximum value of S) is small Aström and Murray

(2008). For the n= 2 case of the circuit in Figure 1, we have (see

The Sensitivity Function):

jSðiuÞj= g2
p +u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1
u
q1q2k � 2ugp

�2

+
�
g2
p � u2

�2

s : (Equation 8)

The robustness of a system can be formally quantified by

jjSjjN = maxujSðiuÞj, the maximum magnitude of the sensitivity

function across all frequencies. (In mathematics, the quantity

k,kN is referred to as the infinity norm of a function.) The quantity

kSkN describes the worst-case disturbance amplification for the

system to an oscillatory input. If kSkN is in some sense small

enough to be manageable, then values of jSj across all fre-

quencies are also small and the system is robust to any distur-

bance. If kSkN is large enough to be problematic, there is at least

one disturbance against which the system is fragile. How much

fragility the system can endure is inherently an application-spe-

cific property; for example, a process that is essential to survival

(such as ATP synthesis) may need to be much more robust than

one that is nonessential to the cell.

Directly computing jjSjjN in terms of the parameters of a sys-

tem is difficult in general, but it is sometimes possible to compute
54 Cell Systems 9, 49–63, July 24, 2019
good lower bounds that yield insight into a system’s robustness.

To this end, we find that (see The Sensitivity Function for a

detailed proof):

jjSjjN RF =

1+
a

2gp

1� a

2gp

=
2g3

p + q1q2k

2g3
p � q1q2k

; (Equation 9)

with equality when,

M = 05gp =

ffiffiffiffiffiffiffiffiffiffiffiffi
q1q2k

2

3

r
5jjSjjN =F =N:

The fragility boundF is constructive, in that we canwrite down

the frequency u that achieves it:����SðiuÞ���� = F5u=

ffiffiffiffiffiffiffiffi
agp

2

r
:

For agivenconstant referencem=q2 weuseEquation7 toderive

a tradeoff between fragility and response time, whichwe quantify

with 1=q1. While the response time will in principle depend on the

interactions of many different parameters, 1=q1 serves as a good

proxy in relative terms (a network with large q1 will respond faster

than an equivalent network that has a small q1). Sincewe assume

the rest of the parameters in the network are fixed, this relative

quantification does well to capture the dynamics of the system.

It is worth noting that there are limitations to this characterization,

as will be seen The Effects of Controller Species Degradation

varying q1 has diminishing effects on response time due to other

rate limiting reactions downstream of X1.

Figure 2A shows this tradeoff curve for a particular set of pa-

rameters as q1 varies, with the corresponding dynamics shown

in Figure 2B. We see from the latter plots that the response

time ð1=q1Þ and fragility ðFÞ correspond directly to the rise times
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Figure 2. Hard Limits and Performance Tradeoffs in Antithetic Integral Feedback Circuits

(A–L) (A)We see the relationship between speed and fragility in the antithetic integral feedback system. Speed can be characterized in terms of any of the

production rates of the system (here we vary q�1
1 ), where higher production rates lead to a faster response. Fragility is defined as a lower bound on the maximum

(legend continued on next page)
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and oscillatory behavior of simulations in Figure 2B. Figure 2C

shows the corresponding sensitivity functions, with colored

dots corresponding to values of F . Here we can clearly see

Bode’s integral theorem (Equation 7) at work, in that the area

above and below the dashed line (corresponding to

logjSðiuÞj = 0) is always equal. We can observe that, as dy-

namics become more oscillatory, jjSjjN becomes large. While

F is, strictly speaking, only a lower bound of kSkN, simulation re-

sults imply that F and jjSjjN are both closely matched and

respond similarly to changes in parameters.

Because we have fixed m=q2 and assumed that h is large, the

only remaining control parameter to vary is q1, so there will only

ever be one meaningful tradeoff dimension to study for this sys-

tem. In the next section, we present results for the case with

nonzero controller degradation rates. This model both captures

a broader range of biological processes and provides a richer

tradeoff space to analyze.
The Effects of Controller Species Degradation
In the previous sections, we assumed that the controller spe-

cies does not degrade, and we derived an analytic stability cri-

terion for the closed-loop antithetic integral feedback net-

works. Fulfilling the stability criterion ensures that the

antithetic integral feedback network precisely adapts. As dis-

cussed, perfect adaptation is a desirable property because it

facilitates disturbance rejection and robustness despite vari-

ability in process dynamics. However, the literature suggests

that implementing antithetic integral feedback with no

controller species degradation can potentially be challenging,

depending on the biological context of the circuit Ang et al.

(2010); Qian et al. (2017). This degradation can act like a leak-

iness in the system, in that controller species are lost before

they have the chance to play a role in the feedback loop.

Even if the controller species are not actively degraded, it

may be the case that dilution due to cell division has a signif-

icant effect on the circuit’s behavior. Because of this, we will

now extend our analysis of stability, performance, and trade-

offs to antithetic integral feedback networks with nonzero

controller species degradation rates.

To model the effects of controller species degradation, we

modify Equations 1c and 1d such that,

_z1 = m� hz1z2 � gcz1; (Equation 10a)

_z2 = q2x2 � hz1z2 � gcz2; (Equation 10b)

where gc is the degradation rate of the control species z1 and z2.
value of the sensitivity function kSkN as defined in Equation 7. (B) Time-domain s

that speed and fragility naturally relate to the rise time and settling time of the syste

in control theory as a waterbed effect, where better attenuation of disturbances

higher frequencies because of Equation 7. The colored dots correspond to values

of controller degradation being varied on its own. We set q1 = 2 h�1 so that, if gc =

at the cost of introducing steady-state error, which is illustrated in the dynamics sh

tradeoff, where the peak of jSðiuÞj (fragility) decreases as the value of jSð0Þj (ste
these plots we vary both gc and q1 such that q1 =gc = 9, corresponding to ε= :1

the latter being captured by how much turnover of Z1 and Z2 is introduced by gc

given a value of gc. This introduces a tradeoff between steady-state error and le

100 nM h�1.
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Including the controller species degradation rate in the anti-

thetic integral feedback network model changes its properties

of stability and performance. In particular, the closed-loop anti-

thetic integral feedback network has a zero steady-state error

for gc = 0, whereas if gc>0, there will generally be some nonzero

error in X2.

In the limit of strong binding, we can analytically compute the

steady-state values of the system species and bound its sensi-

tivity function. While it is somewhat more complicated to

compute even the steady-state values of each species for this

system,we show (seeSteady-State Error) that, in the limit of large

h, it is possible to derive a simple approximate formula for x�2:

x�2z
m

q2

1

1+
gc

a

; (Equation 11)

from which all other steady-state values can be derived. Under

the strong binding assumption, X2 no longer precisely adapts

to the set point m=q2, but rather will have some amount of

steady-state error determined by the ratio gc=a. The relative er-

ror in x�2 can be quantified by the relationship

ε =
m=q2 � x�2

m=q2
=

1

1+
a

gc

: (Equation 12)

We see that gc = 00ε = 0, corresponding to our previous re-

sults that precise adaptation is achieved when there is no

controller degradation. Using this simplified expression, the rela-

tive steady-state error function can be bounded. For example, if

we are interested in obtaining ε<:1, then we can choose a

controller degradation rate such that gc<
a

9
.

Moreover, we can also derive the corresponding stability crite-

rion (see Stability Analysis with Controller Degradation). Here we

present the stability criterion for the two process species case:

q1q2k

2
<gpðgc +gpÞ2: (Equation 13)

This reduces to Equation 4 when gc = 0, and shows that gc>0

leads to an increased stability measure. If we only consider var-

iations in gc, then the combination of Equation 10 and Equation

11 yields yet another tradeoff. As gc increases, the system be-

comes increasingly stable at the cost of worse steady-state error

(see Figures 2D and 2E). In Antithetic Integral Feedback with

Controller Species Degradation, we derive a general stability cri-

terion that depends on comparing the controller and the process

species degradation rates for n> 2 process species. When
imulations corresponding to different points on the tradeoff curve in A. We see

m. (C) Sensitivity functions for various parameter values. We see what is known

at low frequencies necessarily implies worse amplification of disturbances at

of F computed using Equation 7. (D) Here we set gc>0 and observe the effects

0, the systemwould be unstable. We see that increasing gc decreases fragility,

own in panel. (E and F) The corresponding sensitivity functions also illustrate the

ady-state error) increases. F is now computed using Equation 12. (G, H, I) In

in Equation 10. We now observe a tradeoff between fragility and leakiness,

. (J, K, L) Finally, we can instead hold F constant and numerically solve for q1
akiness. In all simulations k = q2 = gp = 1 h�1, h = 1000 nM�1 h�1, and m =



gp[gc or gpzgc, the stability criterion is essentially the same

as the production-degradation inequality in Equation 4. How-

ever, when gp � gc, stability depends primarily on the value of

gc, rather than gp as in the previous cases.

We now focus on analyzing the properties of the sensitivity

function and the tradeoff it introduces. Figure 2F shows the cor-

responding sensitivity function for this system. One major differ-

ence between these sensitivity functions and those in Figure 2C

is that we now have jSð0Þj>0. This is directly related to the

steady-state error in Equation 9, as we can think of a signal

with frequencyu= 0 as a constant reference. A convenient prop-

erty of the sensitivity function is that jSð0Þj = ε, so the previously

mentioned tradeoff between robustness and steady-state error

can be recast as a tradeoff between jSð0Þj and jjSjjN. In

Figure 2C we see that logjSð0Þj = �N, corresponding to

jSð0Þj = 0, implying ε= 0 steady-state error. Because of the wa-

terbed effect, increasing jSð0Þj tends to reduce jjSjjN. This can

be seen directly by deriving a bound similar to the one in Equa-

tion 7 for the case gc>0:

kSkN>F =

�
g2
p +u�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
gc
u�

�2
r

�
g2
p � u�2

�
+ 2gcgp

; (Equation 14)

u=gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a+gc

2gp +gc

s
: (Equation 15)

Though F is now more complicated, we can see that it will

scale asOð1=gcÞ (i.e.F is asymptotically bounded by some con-

stant multiple 1 =gc for small gc). This tells us that increasingly gc

has the potential to reduce F . In Figure 2D we see this effect,

where F asymptotically decreases to 1 as gc (and consequently

ε) increases. It is also straightforward to check that F reduces to

Equation 7 when gc = 0.

So far we have shown what happens when the control param-

eters q1 and gc are varied individually; it is also interesting, how-

ever, to study what happens when they are varied such that a

particular performance characteristic is held constant. Figures

2G–2I demonstrate the system’s response when we vary q1

and gc such that the steady-state error ε is fixed. This sort of vari-

ation can be interpreted as changing the turnover rate, and

consequently the leakiness (described in more depth in Olsman

et al. (2019)), of the controller. This leakiness can also be thought

of decreasing efficiency, as it means that control species are

degraded before ever being involved in feedback. By increasing

gc, we make the system less efficient because the controller

spends resources producing and then degrading molecules of

z1 and z2. Figure 2G shows that highly efficient controllers are

more fragile than less efficient ones. We can also see this in Fig-

ure 2I, where the integrated area of jSðiuÞj gets spread out over

high frequencies, rather than having large and narrow peaks.

This leads to a lower value of kSkN and a corresponding increase

in robustness to a worst-case input. This represents a tradeoff

between having highly localized sensitivity (i.e., there is a small

range of frequencies for which the system responds very badly)

and distributed sensitivity (i.e., there is a wide range of fre-

quencies, but the performance is not particularly bad for any sin-

gle frequency).
Conversely, we can fix F and see how ε changes with leaki-

ness. In Figures 2J and 2K we see that highly efficient controllers

have worse steady-state error, and as the controller becomes

less efficient, ε improves. This can be observed in Figure 2L,

where jSð0Þj is reduced as gc increases. Because jSð0Þj is

decreasing and jjSjjN is fixed, we see that jSðiuÞj stays large

at higher frequencies rather than falling off quickly after its

peak. These latter two tradeoffs demonstrate how some proper-

ties of a control system may shape sensitivity in a relatively

nuanced way that is not easily quantified by a particular number;

however the overall effect becomes clear when looking at the

sensitivity function as a whole.

While anyof these tradeoffs couldbestudied in itsown right, the

important conceptual takeaway is that what underlies all of them

is Bode’s integral theorem. In the same way that conservation

lawsprovide abroadunderstanding of the constraints onphysical

quantities (likemomentumand energy), Equation 7 gives us a uni-

fying framework for understanding the fundamental performance

limitations of control systems.With this result in hand, we see that

theperformance tradeoffs shownherearesimplydifferentwaysof

tuning parameters to shape the function jSðiuÞj.
In this section, we focused primarily on studying one-dimen-

sional curves that relate parameters and performance. This

type of analysis inherently makes simplifications, as all para-

metric relationships are fundamentally slices of a much higher-

dimensional tradeoff space. Baetica et al. (2018) analyze these

higher-dimensional tradeoffs in a more general context,

exploring tradeoff surfaces that combine multiple parameters

simultaneously. In the next section, we will apply some of these

theoretical concepts to a particular biological circuit model.

Though this model is more complex and nonlinear than those

we have discussed so far, we will see that the same essential

theoretical approach applies.

A Synthetic Growth Control Circuit
Here we will use the results from previous sections to study a

simple model of a synthetic antithetic integral feedback circuit

based on the work in You et al. (2004); McCardell et al. (2017),

illustrated in Figure 3A. The intended function of this circuit is

to regulate the population level of a colony of E. coli via an

external reference signal such as an inducer. We model the cir-

cuit with the following set of differential equations:

d

dt
½CcdB� = kp½mRNA� � gp½CcdB� (Equation 16a)

d

dt
N = rN

�
1� N

Nm

�
� t½CcdB�N (Equation 16b)

d

dt
½mRNA� = kRGaN� h½mRNA�½asRNA� � gR½mRNA�

(Equation 16c)

d

dt
½asRNA� = m� h½mRNA�½asRNA� � gR½asRNA�:

(Equation 16d)

Quantities of the form ½ ,� represent intracellular concentra-

tions for each cell, and N represents the total number of cells.
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Figure 3. A Synthetic Growth Control Circuit

The circuit diagram for the dynamics described in Equation 16. This circuit

controls the growth of a bacterial population via the toxin CcdB. The con-

centration of CcdB is in turn regulated by a quorum-sensing molecule AHL,

whose mRNA can be sequestered by an antisense Agrawal et al. (2018). This

circuit is inspired by the work in You et al. (2004) and has been implemented in

McCardell et al. (2017). This figure is adapted from Olsman et al. (2019).
N follows logistic dynamics with an additional death rate due to

toxicity t proportional to the concentration of ½CcdB� per cell.
½CcdB� is a protein that is toxic to the cell, ½mRNA� is the corre-

sponding messenger RNA, the transcription of which we model

as being induced by a quorum-sensing ligand that is produced

at a rate proportional to N, and ½asRNA� is a short antisense

RNA that has a complementary sequence to the CcdB mRNA,

thus acting as a binding partner. The termGa = 10�6 nM captures

the gain between N and mRNA induction mediated by the

quorum-sensing molecule AHL.

As before, we will analyze a linearized version of this circuit. To

do this we must first compute the steady-state values, shown in

Table 1. The linearized dynamics can now be written as

_x=Mx;

where

x =

266664
½CcdB�

N½mRNA�
½asRNA�

377775;M=

266664
�gp 0 kp 0
�T �gN 0 0

0 bkR �n� gR �r

0 0 �n �r� gR

377775;
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and bkR = kRGa, T = tN�, gN = rN�=Nm, a = ðbkRtNmÞ=ðgRrÞ, n =

½asRNA��, and r = ½mRNA��. From this, we can again derive sta-

bility results in the limit of large h. In terms of the parameters inM,

we get a similar relationship to that of Equation 11, with the intro-

duction of heterogeneous degradation rates (discussed in more

generality in Baetica et al. (2018)):

kp bkRT<ðgp +gRÞðgN +gRÞðgp +gNÞ; (Equation 17)

and the corresponding stability measure

M = 1� kp bkRT

ðgp +gRÞðgN +gRÞðgp +gNÞ
:

A notable difference about this circuit is that stability is implic-

itly dependent on m. This is because m appears in N�, which de-

termines the values of gN and T. Given that the function of this

circuit is to control cell proliferation, it is natural to ask what

steady-state levels ofN� are achievable for a given set of param-

eters. Because the scale of N� is set by Nm, we can nondimen-

sionalize the population size with the term N� =Nm. In the case

of gR = 0, we can recast Equation 17 as

N�

Nm

=
mbkRNm

>
kp
gp

t bkRNm

r2
� gp

r
: (Equation 18)

One immediate result of Equation 18 is that, if the

following holds:

kp
gp

t bkRNm

r2
<
gp

r
0

t bkRNm

r
<
g2
p

kp
;

then the steady-state N� is stable for any m such that
mbkR

<Nm (the

steady-state value ofN� cannot exceed the carrying capacityNm

in Equation 16b from the nonlinear model). This constraint is also

implicit in the steady-state value ½asRNA��, which is infinite if
mbkR

= Nm. Because the right-hand side of the inequality has a fac-

tor of g2
p =kp, it is possible to improve performance without

changing the steady-state concentration of ½CcdB� by increasing
both kp and gp simultaneously, effectively increasing the pro-

tein’s turnover rate. If the right-hand side of Equation 18 is pos-

itive, then we see that the system’s performance is constrained,

in that there is a certain population threshold below which N�

cannot be set. Just as in the previous section, as the system ap-

proaches this threshold it will become increasingly oscillatory.

These effects were observed experimentally in Balagaddé

et al. (2005), which uses the same general growth control archi-

tecture as in You et al. (2004).

This section illustrates two key points, the first being that the

general theoretical results from our initial analysis can be adapt-

ed to specific biologically motivated models of control. The sec-

ond more general takeaway is that systems that look on the sur-

face to be both biologically and mathematically distinct (e.g. a

linear model of a chemical reaction network and a nonlinear pop-

ulation-level growth control circuit) have the same underlying

structure. We often think of linearization simply as a method

of approximation, but its real power often lies in showing us



Table 1. Steady-State Parameter Values Derived from Equation 16

Species Steady State Exact Solutions, gR = 0 Approximate Solutions, gR>0

N =Nm N� =Nm
m

Nm
bkR

m

Nm
bkR

+
gR

a

1+
gR

a

½CcdB� r

t

�
1� N�

Nm

�
r

t

�
1� m

Nm
bkR

�
r

t

1

1+
gc

a

�
1� m

Nm
bkR

�

½mRNA� gp

kp
½CcdB�� gpr

kpt

�
1� m

Nm
bkR

�
gpr

kpt

1

1+
gc

a

�
1� m

Nm
bkR

�

½asRNA� m

h

1

½mRNA��
mkpt

hgpr

�
1� m

Nm
bkR

��1
mkpt

hgpr

�
1 +

gc

a

��
1� m

Nm
bkR

��1

For the case gR = 0 these solutions are exact, while they are approximated (assuming h large) for gR>0.
the connection between seemingly different mathematical

models. In this case, it becomes clear what the analogous pro-

duction and degradation rates are in Equations 1 and 16.

This type of system-level theory allows us to abstract away de-

tails to see that seemingly different problems can be tackled with

the same class of tools. In Olsman et al. (2019), we delve into

simulations using biologically plausible parameter values and

demonstrate that controller degradation can dramatically

improve the circuit’s performance at relatively little cost. In Lim-

itations of Linear Analysis we present another nonlinear circuit

with a linearization which structurally matches that of Equation 1,

but whose dynamics are poorly described by the linear theory.

This demonstrates some of the limitations of the linearized

approach presented in this paper. For circuits like these, there

may be parameter regimes where more specialized tools from

nonlinear dynamical systems are required to accurately describe

global behavior.

Controlling Autocatalytic Processes
The general approach of the results presented so far has been to

analyze in detail the simplest classes of networks that can be

controlled by antithetic integral feedback. Going forward, it will

be important to study networks where both the process and

controller have more complex architecture. At the controller

level, the antithetic mechanism alone only implements integral

feedback. It will be useful to investigate mechanisms that could

robustly implement proportional and derivative control mecha-

nisms with the ultimate goal of synthesizing full proportional-in-

tegral-derivative (PID) controller Aström and Murray (2008); Briat

et al. (2018) in synthetic circuits.

Our results thus far have focused on the application of anti-

thetic integral feedback to processes that are open-loop stable.

It will likely be important to study the case of unstable processes,

which can occur in autocatalytic networks such as the one

involved in glycolysis and other metabolic processes. In control

theory, unstable processes require the more general version of

Bode’s integral theorem from Equation 6:Z N

0

lnðjSðiuÞjÞdu=p
X
k

ReðpkÞ; (Equation 19)
where ReðpkÞ is the real part of the right-half plane poles of the

system’s loop transfer function Aström andMurray (2008). These

poles correspond to unstable eigenvalues of the open-loop sys-

tem, and serve an important role in determining the dynamics of

a given feedback system. Larger values of p
P
k

ReðpkÞ corre-

spond to more global sensitivity to disturbances and harsher

performance tradeoffs. Intuitively, this is because the open-

loop system is more unstable, making closed-loop stabilization

more difficult to achieve.

To demonstrate the nuance and complexity added by un-

stable processes, we demonstrate two seemingly similar con-

trol architectures that yield diametrically opposed behavior.

The specific sense in which we use the term ‘architecture’

here refers to the pattern of connectivity in the network. In

contrast we would refer to the circuits analyzed in Perfor-

mance Tradeoffs and Hard Limits and The Effects of Controller

Species Degradation, which have different parameter values

but the same network topology, as having the same architec-

ture. As a simple model of an unstable process, we will use the

process described in Figure 4, which has the following

dynamics:

_x1 = k2x2 � gpx1;

_x2 = k1x1 � gpx2:

Since the system is linear, it is straightforward to check that the

system is unstable when k1k2>g
2
p. Because of the instability of

the process, our controller will need to be repressive rather

than activating, as it has been throughout the paper. The left

panel of Figure 4 describes a plausible control architecture for

such a system:

_x1 =
k2x2

1+ q1z1
� gpx1;

_x2 = k1x1 � gpx2;

_z1 =m1 � hz1z2;

_z2 =
m2

1+ q2x2
� hz1z2:
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Figure 4. Using Antithetic Integral Feedback to Control an Unstable Network
(A and B) Here we take an unstable process (center) and study two different antithetic integral control architectures (left and right). This network is unstable so long

as k1k2>g
2. The repressive architecture (represented by flat-headed arrows) on the left is intrinsically unstable, in that there are no values of the control parameters

that lead to the system’s reaching a stable steady state. A representative simulation of the unstable dynamics is presented below the architecture diagram. In

contrast, the repressive architecture on the right is not only stabilizing, but intrinsically stabilizing. Any nonzero parameter values that result in positive steady-

state concentrations of species will yield a stable closed-loop network. (A) shows the sensitivity function as q1 varies for a fixed value of k1 = 4 h�1. In this case,

Equation 19 tells us that the integrated area of the jSðiuÞjwill be constant as q1 varies, because q1 does not effect the location of right-half plane poles of the loop

transfer function. In (B), q1 = 1 h�1 is fixed and k1 varies. This will change the location of the right-half plane pole, andwe see a consequent change in the integrated

area of jSðiuÞj, with large values of k1 leading to higher overall sensitivity of the system. In all simulations we take q2 = k2 = gp = 1 h�1, h = 1000 nM�1 h�1, m1 =

10 nM h�1, and m2 = 110 nM h�1.
Here Z1 represses X1 and X2 represses Z2. Intuitively, if x2 is

large, then Z1 will be reduced, increasing the amount of Z1 which

in turn reduces the amount of X1 and X2. We prove that this

controller is actually incapable of stabilizing an unstable process,

in that there are no parameters for which the closed-loop system

is stable (Controlling an Unstable Process). If, however, we

instead have Z1 directly repress X2 (Figure 4, right), the model

is as follows:

_x1 = k2x2 � gpx1;

_x2 =
k1x1

1+ q1z1
� gpx2;

_z1 =m1 � hz1z2;

_z2 =
m2

1+ q2x2
� hz1z2:

It is not only possible to stabilize the closed-loop system,

but the system is intrinsically stable. So long as the system

has positive parameter values and steady-state concentra-

tions, we recover robust precise adaptation as presented in

the earlier sections (Controlling an Unstable Process). While

the stable process architecture could either be stable or un-

stable in closed-loop, this unstable process architecture con-

fers a sort of inherent closed-loop stability that is quite surpris-

ing. If the system were linear, this would not be possible.

Stability is a direct result of the nonlinearity introduced by
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repression. There is, however, a limitation: Equation 19 tells

us that a very unstable process (k1k2[g2
p) must exhibit

extreme disturbance amplification. In terms of reference

tracking, this implies that even the intrinsically stable controller

will potentially have very bad transient behavior (e.g. extreme

overshoot and ringing as the system stabilizes). While we can

use the techniques developed in this paper to mathematically

prove why these two architectures behave so differently, we

have little biological insight into the architectural requirements

for a stabilizing antithetic integral feedback controller. In the

future we hope to develop a more general theoretical under-

standing of which architectures can confer stability to unstable

networks.

DISCUSSION

The development of synthetic biomolecular controllers could

enable bioengineering to yield new solutions to problems in

drug synthesis, immune system engineering, waste manage-

ment, and industrial fermentation Narcross et al. (2016); Dunlop

et al. (2010); Csete and Doyle (2002). In their current state,

however, most current synthetic circuits lack the requisite

robustness and scalability required of industrial technologies.

The application of control theory to synthetic biological control-

lers aims to ensure that they function robustly in different host or-

ganisms and signaling contexts, despite perturbations from an



uncertain environments. Concurrently, being able to understand

the design principles of endogenous controllers will both yield

insight into natural biological function and give guidance on

how to design synthetic systems.

The recent development of antithetic integral feedback

controllers represents a promising step towards a more gen-

eral framework for implementing control in biological net-

works. This is best demonstrated by the rapid experimental

progress toward implementing these controllers in a variety

of contexts and with different control species interaction

mechanisms McCardell et al. (2017); Hsiao et al. (2015);

Folliard et al. (2017); Lillacci et al. (2018, 2017). Our work

extends the ideas developed in Briat et al. (2016) and demon-

strates a first step toward clarifying the connection between

the high-level behavior of the circuit with its low-level rate

parameters. We first develop a linearized theory that charac-

terizes the local stability of this class of circuits near the

reference point to which we want the system to adapt. We

then derive theoretical results that characterize how the pa-

rameters of the circuit create relate to performance tradeoffs,

which can be understood in terms of classical frequency-

domain tools from control theory. Finally we extend the exist-

ing model in a variety of ways to probe different aspects of its

behavior, for example, by adding degradation of control spe-

cies and studying various circuits that exhibit interesting

nonlinear behavior. We show that, though there are limitations

to linear analysis, the linearized theory can capture a large

amount of both quantitative and qualitative detail about the

system’s dynamics. These nonlinear circuits have the com-

mon property that their linearization is amenable to the

mathematical tools used to analyze the simpler circuit in

Equation 1.

As antithetic integral feedback controllers become widely

used, we believe that the theoretical results in this paper will

not only provide a broad perspective on how the parameters

of these networks interact to determine circuit performance,

but also provide practical design rules that will tune circuit

behavior to meet performance requirements. We begin to

investigate these rules in Olsman et al. (2019), where we

recast some of the results presented here (as well as some

standalone results) as high-level architectural principles for

understanding the performance of antithetic integral feedback

circuits. We hope that the results here and in related work

(e.g., Briat et al. (2018); Qian and Del Vecchio (2018)) will serve

as a starting point for broader theoretical exploration of novel

biological feedback control systems.

The work presented here provides a link between the tools

from classical control theory and contemporary problems in

systems and synthetic biology. In particular, we showed that

it is possible to explicitly describe parametric conditions that

determine stability, performance tradeoffs, and hard limits

for a class of antithetic integral feedback controllers. While

these limits can each be evaluated on their own, we observe

that they can all be interpreted as different aspects of Bode’s

integral theorem. This result acts like a fundamental conserva-

tion law for the performance of feedback control systems. By

understanding these general theoretical constraints, we can

gain a broad understanding of what is and is not achievable

with a given control architecture.
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METHOD DETAILS

Motivation for Linearized Analysis of Nonlinear Systems
For the purposes of this paper, most of the core theoretical results assume a particular class of circuits. Specifically, we examine the

architecture presented in Figure 1 with a process containing only linear, unimolecular reactions and a single antithetic integral feed-

back loop mediated by the interaction of Z1 and Z2. While this architecture is admittedly simple, it has two important features that

make it amenable to analytic treatment.

The first is that it allows us to derive clean theoretical results, avoiding asmuch as possible the complicated parametric relationship

we would see in more complex models (e.g., A Synthetic Growth Control Circuit). We made the conscious decision to favor analytic

tractability over generality, as we believe the direct analytic results provide a great deal of insight into the important structure of the

problem at hand that would likely be obscured were it to be treated in a more general setting. As such, the goal of this paper is to be

constructive whenever possible, rather than focusing primarily on existence proofs and more abstract formulations. For example, if

we were to perform the analysis in The Stability Criterion for a general linear process, it would not be possible to explicitly derive the

parametric stability criterion in Equation 5. Instead, the inequality would involve generic statements about the roots of equation The

Stability Criterion. By focusing on the chain topology (species Xi being produced by Xi�1 and producing Xi + 1), we are able to see

directly how the parameters of the model relate to the system’s stability.

A secondmotivation for our analysis is that many of the core results in control theory focus on linear systems.While the linearization

of a general physical systemwill not necessarily accurately capture its full dynamics, the particular case of engineering and biological

systems which are designed or evolved to exhibit robust stability around a fixed point are often well characterized by their lineariza-

tion around that point. This idea is formalized by the Hartman-Grobman Theorem in dynamical systems, which proves the existence

of neighborhoods near an equilibrium point for which a nonlinear systemwill behave indistinguishably from its linearization Wikipedia

contributors (2018). A compelling argument motivating the use of simplified and linearized models for studying complex biological

phenomena was published in a commentary by Malleshaiah and Gunawardena (2016), which focuses on some recent practical suc-

cesses of such models in explaining experimental data. Because the purpose of the antithetic integral feedback circuit is to drive the

system to a given set of steady-state values, linearized analysis can be particularly well suited to describe the behavior of the system

near the desired set point. While these results may break down when the system is driven far from equilibrium, we can often learn a

great deal about the nominal operating conditions of a system by developing a thorough understanding of its local behavior.

This is not to say that linearization is the be-all and end-all of control theory. There are many applications for which nonlinearities

play a fundamental role andwhere linearizations fail to capture important aspects of a system’s dynamics, which is the case for many

contemporary problems in robotics Slotine et al. (1991). Many tools for analyzing the stability of nonlinear control problems involve

Lyapunov functions, which serve as a certificate of stability Khalil and Grizzle (2002). Since Lyapunov functions are difficult to

construct and existing methods scale poorly with state dimension, a common strategy is to find a decomposition of a given system

into well-behaved subsystems which are easier to analyze Anderson and Papachristodoulou (2012). These tools have successfully

been applied in the context of both deterministic and stochastic biological systems Anderson et al. (2011); Sootla and Anderson

(2017). While these tools are becoming increasingly applicable to problems in biology, they tend to serve more as a way of compu-

tationally verifying stability. If the goal is to gain some analytic insight the system, it is often the case that classical tools from linear

systems theory are the best option.

Be that as it may, it is often a best practice to start from the linearized theory, where the mathematical tools are both easier to use

andmore general, and only worry about nonlinearities when there is reason to believe that linearization misses an important aspect of

the problem.Mathematically, this comes from the fact that deriving a linearization around a stable fixed point is straightforward, how-

ever assessing the size of the fixed point’s basin attraction is a more complex problem and is generally not amenable to analytical

derivations. As an example of where linearization can potentially do a poor job of describing locally stable behavior, we present in

Limitations of Linear Analysis a nonlinear circuit for which there exist parameters such that the linearized theory predicts local stability

of the desired set-point, yet nonlinear simulations of the circuit shows that the basin of attraction for the stable fixed point can be

made extremely small.

Be that as it may, the linearized theory in Results does a very good job of predicting the performance of the various nonlinear sim-

ulations we show alongside our analytical results. For example the theoretical tradeoff curves derived in Figure 2, which come from

the linearized analysis, do a very good job of predicting the behavior of the accompanying simulations. However, the linearized theory

breaks down when the system becomes locally unstable near the desired equilibrium point. Where the linear theory tells us that the

dynamics of X2 will be exponentially unstable near the set point, it is incapable of predicting that X2 will enter a limit cycle and oscillate

indefinitely, as seen in Figure 1B. This is a fundamentally nonlinear phenomenon, and is outside the scope of the methods we use
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here. In fact we have made little progress towards proving even the existence of these limit cycles, despite their predictable appear-

ance in simulations.

A middle ground between these two extremes can be seen in A synthetic Growth Control Circuit, where we study a synthetic

growth control circuit that is fundamentally nonlinear. Fortunately, the linearization of themodel has a structure that is almost identical

to that of the simpler architecture presented in Model Description. While the underlying parametric relationships in Equation 17 are

more complicated than those of Equation 4, we show in Olsman et al. (2019) that the linearized theory does well to characterize

the stability and performance of the nonlinear circuit around the ultimate steady-state population. While our analysis does not

capture the initial transients due to the logistic growth expression in Equation 14, the theory does a good job of predicting behavior

around the equilibrium point to which we have designed the system to adapt.

The Stability Criterion
We consider the mathematical model of the antithetic integral feedback network described in Equation 1. This mathematical model

has a nonlinear term introduced by the bimolecular interaction between Z1 and Z2. To evaluate its properties of stability and perfor-

mance, we first linearize its dynamics. We can then describe the block structure of the linearized system in terms of the following

matrices:

A =

266664
�gp 0 / 0
k1 �gp / 0
0 1 1 «
0 / kn�1 �gp

377775;B=

2664 q1 0
« «
0 0

3775;
C=

24 0 / 0
0 / q2

35;D=

24�a �b=a
�a �b=a

35;
M=

24A B
C D

35;
where a= ðq1q2

Qn�1
i =1 kiÞ=gn

p and b = hm. The linearized dynamics will then be of the form

_x=Mx;

where

x=

26666664
x1
«
xn
z1
z2

37777775
To prove our main stability result, we will analyze the characteristic polynomial of M, pðsÞ. The roots of pðsÞ correspond to eigen-

values ofM. In general it is difficult to analyze these roots, however we will see that the pðsÞ has a great deal of useful structure which

we can exploit. First, we have to write down what pðsÞ actually is.

Lemma S1

The characteristic polynomial of M is

pðsÞ = detðsI�MÞ= ðs+gpÞn
h
s2 +

�
a+

b

a

�
s
i
+gn

pb:

Proof. We start by using the result that, for a block matrix such as M, we can use the classical result from linear algebra

pðsÞ=detðsI�MÞ

=det

24 sI� A �B
�C sI� D

35
=detðsI� AÞdet

h
ðsI� DÞ � CðsI� AÞ�1

B
i
:

Since A is lower-triangular, we see immediately that the first term is

detðsI� AÞ= ðs+gpÞn:
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To analyze the second term, we first focus on computing CðsI� AÞ�1B. Because of the sparse structure of B and C, we have

CðsI� AÞ�1B=

24 0 0
q1q2ðsI� AÞ�1

n1 0

35;
where ðsI� AÞ�1

n1 is the bottom-left most entry of ðsI� AÞ�1. Using Cramer’s rule, we can compute

ðsI� AÞ�1
n1 =

1

ðs+gpÞn
ð�1Þn+1det

2666666664

�k1 s+gp / 0

« 1 1 «

0 / �kn�2 s+gp

0 0 / �kn�1

3777777775

=
1

ðs+gpÞn
ð�1Þn+ 1ð�1Þn�1

Yn�1

i =1

ki

=

Yn�1

i = 1
ki

ðs+gpÞn
:

Combing these results, we see that

pðsÞ= ðs+gpÞndet

266666664
s+a

b

a

a�
q1q2

Yn�1

i = 1
ki

ðs+gpÞn
s+

b

a

377777775
= ðs+gpÞn

�
ðs+aÞ

�
s+

b

a

�
� b+

gn
pb

ðs+gpÞn
	

= ðs+gpÞn
h
s2 +

�
a+

b

a

�
s
i
+gn

pb:

(Equation S1)

We can now use this result about pðsÞ to analyze the stability of the linearized antithetic integral feedback system.

Theorem S2 (Eigenvalue Classification Theorem)

For a given n and b[maxfa2;agpg, the eigenvalues l of M has a parameter-independent classification of the form
��argðl=gpÞ +

argðl=gp + 1Þ�� = mp, for an integer m.

Proof. To study the eigenvalues ofM, we will analyze the roots of pðsÞ. We begin by substituting s=gps in Equation S1 and setting

pðs = gpsÞ = 0:

g2
psð1+ sÞn

�
s+

a2 + b

agp

	
= � b:

Taking the limit of strong binding ðb[a2;agpÞ, this equation reduces to

sð1+ sÞn
h
1+ s

agp

b

i
= � a

gp

:

From this relationship we see that pðs =gpsÞ has one large real root at sz� b=agp. If we plug this into the phase constraint

equation, this gives a phase of ðn + 1Þp. We will say the index of this root is n + 1. If jsj � b=agp, we get the simplified magnitude

constraint ��s����1 + s
��n = a

gp

and the phase constraint

argðsÞ + nargð1+ sÞ=p+ 2kp= ð2k + 1Þp:
We can see from this that the maximum phase possible is n+ 1 and that each of the indices will be of the form 2k + 1 (i.e., odd in-

tegers). Because the magnitude constraint is independent of k, fundamentally we can have phase indices for any odd integerm such

that jmj%n + 1.
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First we will see what conditions can produce purely real roots. If s is real and s>0, then

argðsÞ + nargð1+ sÞ= 0;

Which violates the phase constraint. This implies that, if there are unstable roots, they are not purely real. If � 1<s<0, then

argðsÞ + nargð1+ sÞ=p;

and we can have stable real roots with index 1. The magnitude constraint tells us that we will have a pair of these real roots if

ða=gpÞ< ðnn=ðn+ 1Þn+ 1Þ (which have index 1) with a bifurcation that generates conjugate pairs of roots when ða=gpÞRðnn=
ðn+ 1Þn+ 1Þ. These conjugate roots will have indices ± 1.

An immediate result of these observations is that, for any positive odd integerm such that 1<m<n + 1, roots cannot be purely real

and must come in conjugate pairs ±m. If n is odd, then we will have a conjugate pair of roots for each m˛½3;n � 1�, either a pair of

small real roots or a conjugate pair for m = 1, and a single large negative real root for m = n + 1.

If n is even, then the situation will be almost the same except for the fact that there will be a second real root with index n + 1. By

some simple accounting, this analysis accounts for all n+ 1 roots of pðs = gpsÞ, which correspond to roots of pðsÞ by a simple re-

scaling by 1=gp.

Theorem S3 (Production-Degradation Inequality)

LetM be the matrix corresponding to a linearization of the antithetic integral feedback system with two control molecules (z1 and z2)

and n process species. In the limit of strong binding (b[a2;agp), the system is stable if and only if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2

Qn�1
i = 1 kiÞ=Un

n+ 1

q
<gp, whereUn

is a constant that only depends on n. Further, when the system has purely imaginary eigenvalues the frequency of oscillation will be

u = tanðp=2nÞgp.

Proof. Wewill prove the results by finding parametric conditions that will result in purely imaginary eigenvalues, and then studywhat

happens to the stability of the system when those parametric conditions do not hold (i.e., equalities become inequalities). To do this,

we generalize a technique from Briat et al. (2016), where we evaluate pðsÞ= 0 on the imaginary axis. In particular, we pick the change

of variable s = iu�gp, where u� is a positive real number (which we can assume without loss of generality because complex roots

come in conjugate pairs), and evaluate pðs = iu�Þ. This yields the equations

pðs= iu�Þ = 00g2
piu

�ð1+ iu�Þnðf+ iu�Þ= � b; (Equation S2)

where f = ða2 + bÞ=agp. If we take the magnitude and phase of the left-hand side of Equation S2, we get the constraints

g2
pu

�
1+u�2�n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 +u�2

q
= b (Equation S3)
n tan�1ðu�Þ + tan�1

�
u�

f

�
=
p

2
+ 2kp: (Equation S4)

From TheoremS2, we know that, in the limit of strong binding, all complex eigenvalues havemagnitudemuch less than f, therefore

tan�1ðu�=fÞ/0. From these observations, we get the simplified relationship

n tan�1ðu�Þ = p

2
+ 2kp0u� = tan

�
p

2n
+
2k

n
p

�
;

and Equation S3 becomes

u�
1+u�2�n
2
gp

a
= 1
0gp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1q2

Qn�1
i = 1 ki

Un

n+1

s
; (Equation S5)

where Un = u�ð1+u�2Þn2. We can think of the parametric constraint from Equation S5 as the boundary between stable and unstable

behavior in the system. Because the left-hand side of Equation S3 is monotone in u�, we can infer that u� is unique and consequently

there can only be one point in parameter space where there exist purely imaginary eigenvalues.

The final step is to study what happens when Equation S5 does not hold. First we look at the regime
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2

Qn�1
i =1 kiÞ=Un

n+ 1

q
<gp.

Again using the uniqueness of u�, if we understand the stability behavior of the system for a particular value of gp in this regime,

the same stability behavior must hold for all gp in this range. Because of this, we can first examine the range where gp is large.
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Intuitively, if degradation is sufficiently stronger than production then all species subject to degradation should converge to 0. To

prove this rigorously, we will first search for roots with a large magnitude. If we apply the strong binding limit to the characteristic

equation from Equation S1, we get

pðsÞ = sðs+gpÞn
�
s+

b

a

�
+gn

pb= 0
0s

�
s

gp

+ 1

�n�
s
gpa

b
+ 1

�
+ gpa= 0:

When
��s��[gpa, the characteristic equation will have the approximate form�

s

gp

+ 1

�n�
s
gpa

b
+ 1

�
= 0;

which gives us n roots at�gp and one root at�b=ðgpaÞ. Since Equation S1 is order n + 2, we know there is one remaining root outside

of this regime. Next, we search for the final small root

��s�� � minðgp; b=ðgpaÞ

�
, which gives the relationship

s + gpa= 0;

which gives a final small root at � gpa. Since each of the n+ 2 roots is negative, the system is stable for all
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2

Qn�1
i = 1 kiÞ=Un

n+ 1

q
<gp.

Nowweexamine the regime
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2

Qn�1
i = 1 kiÞ=Un

n+1

q
>gp.Herewewill useadifferent technique,as taking theanalogous limit of verysmall

gp is less straight-forward to analyze. To start, wewill perform a change of variable s = gps, where s is a complex number.Wewill again

use the strong binding limit, and study roots near the stability boundary, such that the characteristic equation still has the general form

sð1+ sÞn = � a

gp

: (Equation S6)

If we write s = a + ib, we have the magnitude constraint



a2 +b2

�hð1+ aÞ2 +b2
in

=

�
a

gp

�2

>U2
n:

We also get the phase relationship

tan�1

�
b

a

�
+ n tan�1

�
b

1+ a

�
=p
0
b

1+ a
<u�:

Combining these relationships, we get h
a2 +u�2ð1+ aÞ2

i

1+u�2�nð1+ aÞ2n>U2

n:
0

�� a

u�

�2

+ ð1+ aÞ2
	
ð1+ aÞ2n>1:

Since a= 0 at the stability boundary, there must be a regime of parameters sufficiently close to the boundary such that jaj � u�, for
which we have the relationship

ð1+ aÞ2ðn+ 1Þ
>10a>0:

This proves the existence of an unstable point when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1q2

Qn�1
i =1 kiÞ=Un

n+ 1

q
>gp, which implies that all parameters in this regime will

yield unstable dynamics (so long as the strong binding assumption still holds).

We note that, though previous results studied the regime of strong binding (b large), the core assumption that was made is that the

quantity

a2 + b

agp

[1:
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We note that there is an entirely different way to achieve this, by making a2[b;agp. In this regime, all of the previous results follow

in almost exactly the same way, except for changes to the constants involved. It is relatively straightforward to show that the char-

acteristic for the system reduces to

sð1+ sÞn = � bgp

a
:

Following the same steps from the previous proofs, we can find that instability now occurs whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Unq1q2

Qn�1
i = 1 ki

b

n�1

s
=gp:

Interestingly, the stable regime is now ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Unq1q2

Qn�1
i = 1 ki

b

n�1

s
>gp;

the opposite of what occurs in the strong binding limit. One interpretation of these results as a whole is that stability is achievable

when either controller binding or process production are individually large, but not when both are large simultaneously.

The Sensitivity Function
The sensitivity function SðsÞ;where s is a complex number, is the transfer function between an input reference to a system and output

error Aström and Murray (2008). It is particularly useful to examine jSðiuÞj, which corresponds to the magnitude of S given a purely

oscillatory disturbance. If jSðiuÞj>1, then the system will amplify disturbances at a frequency u. Conversely, if jSðiuÞj<1 then the sys-

tem will attenuate disturbances at frequency u.

Define PðsÞ andCðsÞ to be the transfer function between inputs and outputs of the process and controller, respectively. It is a stan-

dard result in control theory that

S=
1

1+PC
:

In general, for a linear system

_x = Ax +Bu
y =Cx;

The transfer function has the form HðsÞ = CðsI� AÞ�1 B. For the antithetic integral feedback system, we have that

PðsÞ = ½0;/; 1�ðsI� AÞ�1

2664 0
«
q1

3775=
q1
Qn�1

i = 1 ki

ðs+gpÞn
;

where just as before we use

A=

266664
�gp 0 / 0
k1 �gp / 0
0 1 1 «
0 / kn�1 �gp

377775:
Similarly, we have that

CðsÞ = ½1;0�ðsI� DÞ�1

24 0
q2

35=
1

s

q2
b

ah
s+

�
a+ b

a

�i ;
where

D=

24�a �b=a
�a �b=a

35:
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Note that CðsÞ has a factor if 1=s, indicating that it corresponds to an integrator. From P and C, we see that

SðsÞ = 1

1+

b

a
q1q2

Qn�1
i = 1 ki

sðs+gpÞn
�
s+

�
a+

b

a

�	
=

sðs+gpÞn
�
s+

�
a+

b

a

�	
sðs+gpÞn

�
s+

�
a+

b

a

�	
+ bgn

p

:

If we again take the limit ða + ðb=aÞÞ=gp[1 and substitute s=gps we get the approximation

SðsÞz sð1+ sÞn

sð1+ sÞn + a

gp

:

Ideally wewould like to analyze kSðiuÞkN = maxu
��SðiuÞ��, however this is difficult to compute in general. A lower bound for this term

can, however, be easily computed by evaluating a particular value of u close to the maximum. Specifically, we will use u =

tanðp=2nÞgp = u�gp. At s = iu�, we get

��Sðiu�Þ��z u�ð1+u�2Þn2
u�ð1+u�2Þn2 � a

gp

=
Un

Un � a

gp

:

From our previous results, we know that the system is purely oscillatory when Un = a=gp, which corresponds to
��Sðiu�Þ�� =

kSðiuÞkN = N. This gives the intuitive result that the system is infinitely sensitive to a periodic disturbance at u=u�gp when

Un = a=gp. In general, we will have that

kSðiuÞkNR
Un

Un � a

gp

: (Equation S7)

For the special case of n = 2, we can explicitly derive an even tighter bound than the one in Equation S7. First, we can explicitly

compute

jSðiu�Þjz

���iu�ð1+ iu�Þ2
�������iu�ð1+ iu�Þ2 + a

gp

����
=

u�
1+u�2������ a

gp

� 2u�2
�
+ iu�
1� u�2�����

=
u�
1+u�2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

a

gp

� 2u�2
�2

+


u�
1� u�2��2s :

Much of the complexity in this equation comes from the denominator, which can be simplified if we pick u� such that either the real

or imaginary part is 0. If we plug in u� = tanðp=4Þ = 1, the complex part of the denominator vanishes and we recover the orig-

inal bound:

jjSjjN R
��SðiÞ��= 2

2� a

gp

=
1

1� a

2gp

:

To set the real part to zero, it must be the case that

a

gp

� 2u�2 = 00u� =
ffiffiffiffiffiffiffiffi
a

2gp

r
:

Plugging this in, we get that

kSkN R

����S�i ffiffiffiffiffiffiffiffiffiffiffiffiffi
a=2gp

q �����= 1+
a

2gp

1� a

2gp

>
1

1� a

2gp

: (Equation S8)
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We see that this new bound is strictly greater than the one derived in Equation S7, and therefore is a better approximation of kSkN.

While Equation S7 generalizes to all value of n, the latter bound unfortunately requires us to find real roots of order n polynomials,

which scales poorly for this problem. We note that these bounds are chosen purely because they are computationally tractable.

We were unable to rigorously demonstrate the conditions under which they will be close to kSkN, however Figure 2 suggest that

bound does well, at least in the range of parameters used in our simulations. Empirically, we never observed conditions while devel-

oping this paper for which the matching between F and kSkN was particularly worse than what is shown in Figure 2.

Antithetic Integral Feedback with Controller Species Degradation
Steady-State Error

Following the same notation as the previous sections, we can model the role of controller degradation as

_x1 = q1z1 � gpx1 (Equation S9a)
_x2 = k1x1 � gpx2 (Equation S9b)
«

_xn = kn�1xn�1 � gpxn (Equation S9c)
_z1 = m� hz1z2 � gcz1 (Equation S9d)
_z2 = q2xn � hz1z2 � gcz2; (Equation S9e)

where gp is the degradation of the process species xi and gc is the degradation rate of the control species z1 and z2. At a high level we

will proceed much in the same way as we did previously, however we will see that nonzero controller degradation leads to several

technical challenges that do no appear when gc = 0. The first of these arises from simply solving for the steady values around which

wewill linearize themodel.Where previously we used the fact that _z1 � _z2 = 00x�n = m=q2, where � denotes a steady-state value. To

subsequently solve for all other steady-state concentrations, we are now left with the messier relationship

_z1 � _z2 = 00x�n =
m

q2
� gc

q2



z�1 � z�2

�
:

This implies that, for gc>0, we expect xn to differ from the desired steady-state m =q by some error that depends on the values of z�1
and z�2. Since this error is almost surely a function of many other parameters, we essentially lose the robust precise adaptation prop-

erty where x�n is completely independent of the network’s parameters. Wewill first calculate a general form for x�n, then derive a large h

limit that makes further calculations tractable.

To begin, we use Equation S9d and S9e to derive the relationships

m = z�1


hz�2 + gc

�
0z�2 =

1

h

�
m

z�1
� gc

�

x�n =
1

q2
z�2


hz�1 +gc

�
:

Combining these equations, we find that

x�n =
m

q2
+
gcm

hq2

1

z�1
� gc

q2
z�1 �

g2
c

hq2
:

Finally, we observe that

z�1 =
gn
p

q1
Q

iki
x�n =

q2

a
x�n;
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which yields the relationship

x�n =
m

q2
+
gcm

ha

1

x�n
� gc

a
x�n �

g2
c

hq2
;

0
�
1+

gc

a

�
x�2n =

�
m

q2
� g2

c

hq2

�
x�n +

gcm

ha
: (Equation S10)

While this quadratic can be solved explicitly, the result can be greatly simplified by again taking the limit of large h. Here the sense in

which we take this limit is such that m=q2[g2
c=hq2 and 1[gcm=ha. These reduce to the condition

h[
g2
c

m
;
gcm

a
:

Combinedwith the previous assumption about the size of hwe nowhave a large number of conditions to fulfill, however we find that

in practice we rarely are in parameter regimes where a great deal of tuning needs to be done to satisfy everything. That being said, we

can use this limit to reduce Equation S10 to �
1+

gc

a

�
x�2n =

m

q2
x�n0x�nz

m

q2

1

1+
gc

a

: (Equation S11)

Using the same approximation, we can also compute

z�1 =
q2

a
x�nz

m

a+gc

; (Equation S12)
z�2 =
q2

hz�1 +gc

x�nz
a

h
: (Equation S13)

These will be useful for computing the linearized dynamics of the system in the next section.

As a sanity check, we can immediately see that x�n =m=q2 when gc = 0, as expected. For gc>0, Equation S11 captures the steady-

state error relative to the set point m =q induced by nonzero controller degradation. We see that, so long as the ratio gc =a � 1, error

will be negligible. What is unclear at this point is under what conditions this can be achieved while still ensuring stability of the overall

system. To this end, we will now characterize stability and performance for gc>0.

Linearized Dynamics with Controller Degradation

Herewe present results analogous to those in The Stability Criterion, omitting detailed proofs since the structure of the argument from

this point on is essentially identical to what was show in the previous section. Because the only nonlinear terms in our system are in

Equation S9d and S9e, the only matrix to change in our linearization from The Stability Criterion is

D =

24�hz�2 � gc �hz�1
�hz�2 �hz�1 � gc

35z
24�a� gc �b=ða+gcÞ

�a �b=ða+gcÞ � gc

35:
Using thisDmatrix and proceeding with precisely the same calculation as before, we can derive the characteristic equation for the

system:

ðs+gpÞnðs+gcÞ
�
s+gc +a+

b

a+gc

	
+ gn

pb
a

a+gc

= 0: (Equation S14)

We again take the appropriate limit of b[ðgc +aÞgp; ðgc +aÞ2 to follow the same argument as in The Stability Criterion to get the

simplified expression in terms of s = s=gp:

ð1+ sÞn
�
gc

gp

+ s

�
= � a

gp

: (Equation S15)

First we note that, when gc = 0, we recover Equation S6 as expected. Proceeding as before, we can write the characteristic poly-

nomial in terms of phase and magnitude constraints for s = iu�:



1+u�2�n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
c

g2
p

+u�2

s
=
a

gp

(Equation S16)
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n tan�1ðu�Þ + tan�1

�
gp

gc

u�
�
=p: (Equation S17)

Stability Analysis with Controller Degradation

Unfortunately, the additional complexity in Equation S17 makes it challenging to write down the sort of explicit closed-form expres-

sions for stability seen in Theorem S3. While we can write out explicit stability conditions for n = 2, we will need to study particular

parameter regimes for n>2 as the summation relationship for tan�1 scales poorly.

To solve for u� in Equation S17 we make use of the inverse trigonometric identity

tan�1ðaÞ + tan�1ðbÞ= tan�1

�
a+b

1� ab

�
ðmod pÞ:

Applying this identity twice yields the relationship

2tan�1ðu�Þ+ tan�1

�
gp

gc

u�
�
=p

0tan�1

�
2u�

1� u�2

�
+ tan�1

�
gp

gc

u�
�
= 0ðmod pÞ

0tan�1

0BB@2u� +
gp

gc

u�
1� u�2�
1�

�
1+

gp

gc

�
u�2

1CCA= 0ðmod pÞ:

Since the only value for which tan�1ðxÞ= 0 is x = 0, the problem reduces to solving the equation

2u� +
gp

gc

u�
1� u�2�= 0

02+
gp

gc



1� u�2�= 0

0u� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
gc

gp

+ 1

r
:

Combining this with Equation S16 yields the stability criterion

q1q2k

2
<gpðgc +gpÞ2: (Equation S18)

If we assume that we have full freedom to set control parameters, then Equation S18 that it is possible to make the production

rates q1 and q2 large, so long as there is a compensatory increase in gc. This implies that we can, in a sense, sidestep the performance

tradeoffs between speed and stability if we are willing pay a price in terms of efficiency, measured by the turnover rates of z1 and z2.

Next we will study what happens when n>2. We note that there is an interesting topological distinction going from n= 2 to n>2

which yields qualitatively different stability results. To see why this is the case, we return to Equation S17:

n tan�1ðu�Þ + tan�1

�
gp

gc

u�
�
=p:

Recall that tan�1ðxÞ<p =2 for all x. Because this is the case, when n= 2 it is always the case that 2tan�1ðu�Þ<p, implying that satis-

fying the phase condition is strictly contingent of the value of the term tan�1ððgp=gcÞu�Þ. On the other hand, for n>2, there exist values

of u� such that ntan�1ðu�ÞRp, so depending on the relative magnitude of the ratio gp =gc satisfying the phase condition may or may

not depend strongly on gc.

If we look again at Equation S15:

ð1+ sÞn
�
gc

gp

+ s

�
= � a

gp

;

we notice that the only place in which gc appears is in the ratio gc =gp. One natural approach to studying the solutions to this equa-

tion is to examine what happens at various limits, namely gc � gp, gc = gp, and gc[gp. Here we will present results without going

into formal detail, however the analysis can be made rigorous by analyzing Equation S17.

Case I gc � gp. This case is fairly straightforward, as it is it reduces to the case of no controller degradation. We recover the char-

acteristic polynomial
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sð1+ sÞn = � a

gp

;

which has the same exact stability condition as in Theorem S3.

Case II gc = gp. This case is representative of what happens when controller and process degradation have the same order of

magnitude. We use gp =gc = 1 in Equation S17 to find that the stability boundary is characterized by

n tan�1ðu�Þ+ tan�1

�
gp

gc

u�
�
=p

0
gc =gp ðn+ 1Þtan�1ðu�Þ=p

0u� = tan
� p

n+ 1

�
:

Here it is useful to define the quantity

~Un =

�
1+ tan

�p
n

�2
�n

2

;

where ~Un differs from the previously defined Un by a factor of 1=2 in the argument of the tangent term. Using this expression, we can

use Equation S16 to derive the stability criterion

a

gp

<~Un+10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1q2

Q
iki

~Un+ 1

n+1

s
<gp:

This condition is qualitatively the same as the one in Theorem S3 up to a constant difference accounted for by the ~Un+ 1 term.

Case III gc[gp. Following a similar line of reasoning as in the previous case, taking the limit gp =gc � 1 in Equation S17 to

show that

n tan�1ðu�Þ+ tan�1

�
gp

gc

u�
�
=p

0
gc[gp

n tan�1ðu�Þ=p

0u� = tan
�p
n

�
:

We again use Equation S16 to find that the stability boundary is set by the following relationship:



1+u�2�n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
c

g2
p

+u�2
s

=
a

gp

0
gc[gp ~Un

gc

gp

=
a

gp

0~Un =
a

gc

:

This implies that the stability criterion for this case is

a

gc

<~Un0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1q2

Q
iki

gc
~Un

n

s
<gp:

Notice that in the n= 2 case,u� is a function of gc and the subsequent stability criterion depends on the term ðgp +gcÞ2. This is quite
different from the n>2 cases where in each regime, the gc dependence in u� disappears. Similarly, in the stability criterion we see a

linear (rather than quadratic) dependence on gc. This is a direct result of the previously mentioned topological difference between the

n= 2 and n>2 cases.

One interesting side effect of this results is that, when the system is purely oscillatory (on the stability boundary), the frequencies of

oscillation may be dramatically different depending on n. Consider the case where gc[gp If n = 2, this frequency will be

u = gpu
� =gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
gc

gp

+ 1

r
z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gpgc

q
:

If n>2, we use the results from Case III above to find

u = gpu
�zgptan

�p
n

�
:
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In the former case, u scales with
ffiffiffiffiffiffi
gp

p
, whereas in the latter case u is independent of gc. This implies that for large controller degra-

dation rates we would expect much faster oscillatory modes for n= 2 than for n>2.

The Effects of Degradation on Sensitivity and Performance

Just as in The Sensitivity Function, we can write the generic sensitivity function for the linearized antithetic integral feedback system

with degradation in terms of the variable s=gps as

SðsÞ=
ð1+ sÞn

�
gc

gp

+ s

�
ð1+ sÞn

�
gc

gp

+ s

�
+

a

gp

: (Equation S19)

For the case n = 2, we can again derive an explicit lower bound for jjSðiu�ÞjjN:

jSðiu�Þj=

����ð1+ iu�Þ2
�
gc

gp

+ iu�
���������ð1+ iu�Þ2

�
gc

gp

+ iu�
�
+
a

gp

���� ;

=

ð1+u�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
c

g2
p

+u�2
s

�����gc

gp



1� u�2�� 2u�2

�
+ i

�
2u�gc

gp

+u�
1� u�2������ :
(Equation S20)

We can again solve for u� such that the real part of the denominator is zero:

gc

gp



1� u�2�� 2u�2 = 00u� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a+gc

2gp +gc

s
:

If we evaluate Equation S20 at u�, we can write the bound

kSkN>jSðiu�Þj = F =

ð1+u�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
gc

u�gp

�2
s

ð1� u�2Þ+ 2
gc

gp

: (Equation S21)

It is easy to check that, for gc = 0, we recover the bound from Equation S8. Asu� approaches 1 + 2gc=gp, jjSjjN will asymptotically

increase to N. Alternatively, increasing gc will decrease sensitivity, and consequently improve robustness. We can think of gc as

capturing the inefficiency of our controller (higher degradation means the control species are degraded before being used in a anti-

thetic feedback reaction). In these terms, we see that increasing gc will reduce F at the cost of increased steady-state error (see

Figures 2D–2F). If we hold ε constant by varying both gc and q1, the we can decrease F at the cost of on decreasing efficiency of

the controller (see Figures 2G–2I). Finally, we can vary gc and q1 such that F is constant, which leads to a tradeoff between

steady-state error and efficiency (see Figures 2J–2L).

Limitations of Linear Analysis
To demonstrate the limits of the linearized theory presented throughout the paper, we will briefly describe a circuit architecture that

uses antithetic integral feedback, yet for which there exist parameters such that linearization does not yield practically useful predic-

tions of stability. This circuit still has two process species X1 and X2 and two control species Z1 and Z2, however the process will

follow a new set of dynamics:

_x1 = f1 � q1z1x1; (Equation S22a)
_x2 = f2 � kx1x2; (Equation S22b)
_z1 = m� hz1z2; (Equation S22c)
_z2 = q2x2 � hz1z2: (Equation S22d)
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We see that now, rather than X1 and X2 having linear dynamics as in Equation 1, they interact via bimolecular degradation, as would

be the case if Z1 and X1 were proteases respectively targeting X1 and X2 (possibly using the mechanism described in Gao et al.

(2018)). Solving for steady-state values yields:

x�1 =
f2q2

mk
; x�2 =

m

q2
; z�1 =

f1mk

f2q1q2
; z�2 =

f2q1q2

hf1k
; (Equation S23)

and the corresponding linearized dynamics are

_x=Mx;
M=

266664
�q1z

�
1 0 �q1x

�
1 0

�kx�2 �kx�1 0 0
0 0 �hz�2 �hz�1
0 q2 �hz�2 �hz�1

377775:
since these linearized dynamics have the same essential structure as those of Equation 3 with the addition of heterogeneous degra-

dation rates q1z
�
1 and kx�1, we can use the same methods as in The Stability Criterion to find that the associated linearized stability

criterion for Equation S22 is

q2


q1x

�
1

�

kx�2

�
<


q1z

�
1

�

kx�1

��
q1z

�
1 + kx�1


0

f2

f1

q1q2

k
<
f1

f2

mk

q2
+
f2q2

m
:

(Equation S24)

This local stability relationship is harder to interpret than the one presented in Equation 4, and does not yield the same clean sep-

aration of parameters. This is less due to the structure of the dynamics, and more because of the complex way that the steady-state

values depend on parameters. Figure S1 shows that, for a range of parameters, the behavior of the nonlinear circuit in Equation S22 is

well characterized by Equation S24 when the initial conditions are near the equilibrium determined by Equation S23.

What is more interesting is that we find that there exist parameters for which Equation S24 fails to capture global stability. Equation

S24 successfully predicts stability in Figure S2A–S2C, where X2 converges to its desired reference point. There are, however, param-

eters for which Equation S24 is satisfied, but simulations show clear limit cycle behavior (see Figure S2D) if the initial conditions are

sufficiently far from equilibrium. This implies that, for these parameters and initial conditions, the limit cycle is a strong attractor and

the local point to which we want the system to adapt, x�2 = m=q2, has a sufficiently small basin of attraction that initial transients are

enough to push the system into the regime where the limit cycle dominates. More concisely, it appears that for the system described

in Equation S22, Equation S24 is a necessary but not sufficient condition for global stability.

While we were able to get some sense via simulation for when Equation S24 is a good predictor of global stability, we hope that

future work in this area will be able to produce a constructive, unifying theory that is sufficient to explain these phenomena precisely.

Controlling an Unstable Process
In all prior sections, we have assumed that the underlying process being controlled is open-loop stable. Herewewill examine a simple

model of an open-loop unstable process and describe which control architectures are capable of stabilizing the closed-loop system.

To start, we will use a simple linear system as our process:

_x1 = k2x2 � gpx1;
_x2 = k1x1 � gpx2:

This system will be unstable when at least one eigenvalue of the matrix:

A=

24�gp k2
k1 �gp

35
has positive real part. With some straightforward linear algebra we can find that the eigenvalues of A are

l± = � gp ±
ffiffiffiffiffiffiffiffiffi
k1k2

p
:

Because k1;k2;gp>0, we know that l�<0 for all parameters. l+ , however, can be either positive or negative. In particular,ffiffiffiffiffiffiffiffiffi
k1k2

p
>gp5l+>0:
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To facilitate our study of unstable processes, we will assume
ffiffiffiffiffiffiffiffiffi
k1k2

p
>gp for the rest of the section. One immediate difference is that,

due to the unstable process, any controller must now interact with the process via repression rather than activation. Tomodel this, we

will first study the following architecture (described in Equation 18 and the left panels of Figure 4):

_x1 =
k2x2

1+ q1z1
� gpx1; (Equation S25a)
_x2 = k1x1 � gpx2; (Equation S25b)
_z1 = m1 � hz1z2; (Equation S25c)
_z2 =
m2

1+ q2x2
� hz1z2: (Equation S25d)

If q1 = q2 = 0, then this architecture reduces to the open-loop system described above. The controller topology is essentially the

same as in the stable case, with the core difference that z1 represses x1 and x2 represses z2, where before these interactions were

activating. Since now there is no reaction synthesizing z2, wemust add in some external production rate m2. Wewill again proceed by

solving for the steady-state concentrations of each species and linearizing around these values. The steady-state concentrations are

as follows: 266664
x�1
x�2
z�1
z�2

377775=

24 gp

k1q2

m2 � m1

m1

;
1

q2

m2 � m1

m1

;
k1k2 � g2

p

q1g2
p

;
m1

h

q1g
2
p

k1k2 � g2
p

35T

: (Equation S26)

If we now linearize around this fixed point, we can define a new set of parameters:

bk2 =
d

dx2

�
k2x2

1+ q1z1

�
z�
1

=
g2
p

k1
;

bq1 =
����� d

dz1

�
k2x2

1+ q1z1

�
x�
2
;z�
1

�����= q1

q2

g4
p

k21k2

m2 � m1

m1

;

bq2 =
����� d

dx2

�
m2

1+ q2x2

�
x�
2

�����= q2
m2
1

m2

;

a= hz�2 =
m1q1g

2
p

k1k2 � g2
p

;

b= hm1;

which characterize the linearized set of dynamics:

_x=Mx;
x =

266664
x1
x2
z1
z2

377775;M=

266664
�gp

bk2 �bq1 0
k1 �gp 0 0
0 0 �a �b=a

0 �bq2 �a �b=a

377775:
Following the same methods in The Stability Criterion, we can derive the characteristic polynomial for M,

pðsÞ = sðs� l+ Þðs� l�Þ
�
s+a+

b

a

�
+
b

a
bq1bq2k1;

where we now use l± = � gp ±

ffiffiffiffiffiffiffiffiffiffi
k1 bk2

q
. If we plug in bk2, we see that l+ = 0 and l� = � 2gp. The fact that the process’s eigenvalues

change when comparing the open- and closed-loop systems is a byproduct of the fact that our original model was nonlinear, and is

something that would not occur for a strictly linear system.
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Again taking the limit of strong binding, which here takes the form b[a2;2agp, and setting pðsÞ = 0, we get the equation

s2ðs+ 2gpÞ = � bq1bq2k1: (Equation S27)

Theorem S4

Equation S25 is intrinsically unstable, so long as k1k2>gp.

Proof. The corresponding phase constraint for Equation S27 when s= iu is:

tan�1

�
u

2gp

�
= 00u= 0:

First, we note that, because the right-hand side of Equation S27 has all positive coefficients, it is not possible for the equation to be

satisfied by a value of s that is both real and positive. Further, because the equation is monotone, there can be at most most real and

negative solutions. This means that there are no parameters such that the linearized system transitions from being stable to unstable

or vice versa, since the system’s complex conjugate solutions would need to pass through a purely oscillatory mode with u>0 for this

to occur. This implies that the system is either always stable or always unstable, independent of the particular values of parameters.

From this, we can prove that there are no solutions to Equation S27 with ReðsÞ<0 by simply proving the existence of a single such

solution. If we take s = a+ ib; a<0;b>0 (we can assume b>0 without loss of generality because solutions come in conjugate pairs), the

phase constraint for Equation S27 has the form

2argðsÞ + argðs+ 2gpÞ=p

Since p>argðsÞ>p =2 and p>argðs + 2gpÞ>0, it must be the case that

3p>2argðsÞ+ argðs+ 2gpÞ>p:
Consequently, there is no value of gp for which the phase constraint can be satisfied by swith a<0. By contradiction, it must then be

the case that all complex conjugate solutions to Equation S27 have ReðsÞ>0, and the system is therefore the system is intrinsically

unstable. It is also relatively easy to check that, if a>0, the corresponding inequalities are satisfiable (though explicitly constructing the

solutions is not straightforward).

Next, we consider an alternative architecture, shown in Figure 4 and Equation 19. This system is described by the same dynamics

as before, except we now have z1 directly repressing x2 (rather than indirectly doing so via x1):

_x1 = k2x2 � gpx1; (Equation S28a)
_x2 =
k1x1

1+ q1z1
� gpx2; (Equation S28b)
_z1 = m1 � hz1z2; (Equation S28c)
_z2 =
m2

1+ q2x2
� hz1z2: (Equation S28d)

The steady-state values are almost identical to those of Equation S26, except we now have that

x�1 =
k2

gpq2

m2 � m1

m1

:

We can define another set of linearized parameters,

bk1 =
d

dx1

�
k1x1

1+ q1z1

�
z�
1

=
g2
p

k2
;

bq1 =

����� d

dz1

�
k1x1

1+ q1z1

�
x�
1
;z�
1

�����= q1

q2

g3
p

k1k2

m2 � m1

m1

;

with bq2, a, and b the same as before. Our linearized dynamics are now described by the matrix
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M=

266664
�gp k2 0 0bk1 �gp �bq1 0
0 0 �a �b=a

0 �bq2 �a �b=a

377775;
with a corresponding characteristic polynomial

pðsÞ = sðs� l+ Þðs� l�Þ
�
s+a+

b

a

�
+
b

a
bq1bq2ðs+gpÞ;

with l± = � gp ±

ffiffiffiffiffiffiffiffiffiffibk1k2

q
. The limiting form of the characteristic equation is now

s2ðs+ 2gpÞ = � bq1bq2ðs+gpÞ: (Equation S29)

Theorem S5

Equation S28 is intrinsically stable, so long as k1k2>gp and non-negative steady-state values exist for each species.

Proof. The structure of this proof will follow the same structure as Theorem S4, except that the conclusion will be reversed because

of the architectural differences between this circuit and the previous one. In particular, if we examine the phase constraint corre-

sponding to Equation S29, we get

2argðsÞ + argðs+ 2gpÞ=p+ argðs+gpÞ:
Assume that s = a + ib;a;b>0, corresponding to the existence of unstable dynamics. In this case, this yields the constraint

2 tan�1

�
b

a

�
+ tan�1

�
b

a+ 2gp

�
=p+ tan�1

�
b

a+gp

�
:

However, we can also observe both that 2 tan�1ðb=aÞ<p and tan�1ðb=ða + 2gpÞÞ<tan�1ðb=ða +gpÞÞ for all a;b>0. Because of this,

there is no way for the sum of the left-hand side terms to ever equal the sum of the right-hand terms, therefore there cannot be a

solution to Equation S29 with ReðsÞ>0. This implies that Equation S28 is intrinsically stable whenever non-negative steady-state

values exist.

Finally, we can find the sensitivity function for the stabilizing architecture. This is somewhat complicated by the fact that the pro-

cess transfer function varies with control parameters, so it is difficult to separate the process and the controller transfer functions.

However we can use a convenient form

SðsÞ=polðsÞ
pclðsÞ ;

where pclðsÞ is the characteristic equations for the closed-loop systems, and polðsÞ= limq1/0pclðsÞChandra et al. (2009, 2011). Using

pclðsÞ = s2ðs+ 2gpÞ
�
s+a+

b

a

�
+
b

a
bq1bq2ðs+gpÞ;

we get the sensitivity function (assuming large b):

SðsÞ= s


s+gp �

ffiffiffiffiffiffiffiffiffi
k1k2

p �

s+gp +

ffiffiffiffiffiffiffiffiffi
k1k2

p �
s2ðs+ 2gpÞ+ bq1bq2ðs+gpÞ

:

Note that it is important the we take care with the limits, as the roots of polðsÞ should reflect the eigenvalues of the unstable open-

loop system. This is used to generate the right-hand plots in Figures 4A and 4B.

DATA AND CODE AVAILABILITY

All figures and simulations for this paper were generated in Python. A Jupyter notebook has been provided as Data S1, each of which

produces the elements of a corresponding figure in our paper. While some annotations and cartoons were added using image editing

software, wherever possible we tried tomake the generation of plots entirely self-contained. The only Pythonmodules that need to be

imported are matplotlib, scipy, and numpy. An optional module, jupyterthemes, is used purely for stylistic purposes and can be com-

mented out if desired. The only difference will be a change in the color scheme for plots.
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