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Abstract— Biological control systems often contain a
wide variety of feedforward and feedback mechanisms that
regulate a given process. While it is generally assumed
that this apparent redundancy has evolved for a reason,
it is often unclear how exactly the cell benefits from
more complex circuit architectures. Here we study this
problem in the context of a minimal model of the Heat
Shock Response system in E. coli and show, through a
combination of theory and simulation, that the complexity
of the natural system outperforms hypothetical simpler
architectures in a variety of robustness and efficiency
tradeoffs. We have developed a significantly simplified
model of the system that faithfully captures these rich
issues. Because a great deal of biological detail is known
about this particular system, we are able to compare simple
models with more complete ones and obtain a level of
theoretical and quantitative insight not generally feasible
in the study of biological circuits. We primarily hope this
will inform future analysis of both heat shock and newly
studied biological complexity.

I. INTRODUCTION

Biological control systems, much like engineered
ones, are faced with a variety of heterogeneous con-
straints that shape their design [1], [2]. Because of
this, the selective pressures of evolution have likely
not only selected for nominal performance, but also
for robustness and efficiency [3]. While many different
system architectures may be able to perform a given
task, it is reasonable to assume that the ones that actually
evolve reflect a balance between the myriad trade-offs
faced by the cell.

In this paper, we examine such trade-offs in the
context of the Heat Shock Response (HSR) system of
E. coli. When a cell encounters a rapid increase in
temperature, there is a corresponding increase in the rate
at which its proteins become misfolded. If too many of
the cell’s proteins are misfolded, the cell will likely die.
To prevent this, cells will produce Heat Shock Proteins
(HSPs) whose job is to rapidly refold proteins so that
the organism can continue functioning normally.

From a systems perspective the HSR clearly must be
an extremely fast and robust system, as it is vital to
a cell’s ability to respond to sudden and unexpected
stress. On the other hand, if heat shock is a rare event
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Fig. 1. Abstract block diagram of the full HSR System. This shows a
high-level representation of how the HSR system uses a combination of
feedforward and feedback mechanisms to regulate the level of unfolded
protein in a cell. Arrows signify effects which increase concentration,
while flat-headed line signify repression of activity.

then it would be wasteful for the cell to constantly
produce HSPs at a high rate. Intuitively, we would
expect that a strong architecture would be capable not
only of refolding proteins, but would do so as quickly,
efficiently, and robustly as possible.

We find that the natural HSR system in E. coli
does an excellent job balancing these various trade-offs.
To demonstrate this, we examine several hypothetical
alternative architectures for the system, and show that
the complexity of the full system results in performance
that none of the simpler systems can match. While it
is possible for these reduced architecture to perform
well on a given metric, e.g. efficiency or speed, they
are limited in their ability to do well on many tasks
simultaneously. We find that the strong performance
of the natural HSR system is due to several elegant
mechanisms, for example a layering of planning and
control modules, that work together to make the system
highly functional.

In section II, we will present a new reduced-order
model of the HSR system that faithfully captures the
quantitative results of more complex models. In sec-
tion III we will present hypothetical alternative architec-
tures to the HSR system. In section IV we analyze trade-
offs between several response metrics, and compare the
relative performance of the architectures discussed in
section III.

II. REDUCED-ORDER MODEL

The core of the HSR system involves four classes
of proteins: the unfolded proteins which the system is
trying to refold, the chaperone whose job it is to refold
proteins, the σ factor that regulates the expression of
all proteins involved in heat shock response, and the
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proteases that degrades the σ factor. While the real HSR
system has a variety of chaperones and proteases that
are expressed during heat shock, we follow previous
work [4], [5] and substitute a single chaperone (DnaK)
denoted [D] and a single protease (FtsH) denoted [F ] in
our model. Each of these has a corresponding mRNA
responsible for its translation ([MD] and [MF ], respec-
tively), and the system is controlled by a single σ factor
(σ32) denoted [σ] that regulates RNA transcription and
has a constant amount of mRNA ([Mσ]) at all times. This
assumption comes from the fact that [Mσ] transcription
is regulated by a separate mechanism, independent of
what we study in this model. We ignore the effects
of temperature on the protein synthesis rates, which is
admittedly a simplification but is consistent with prior
modeling work by domain experts [4], [5].

Before heat shock occurs, much of the σ factor is
inactivated by DnaK. This occurs because σ32 contains a
region that closely resembles an unfolded protein, so any
DnaK not in the process of refolding proteins will bind
to σ32, effectively sequestering it. The protease FtsH will
target sequestered σ factor for degradation, effectively
giving it a high turnover rate (i.e. rapid production and
degradation). Both provide feedback control.

Upon heat shock in the cell, two key events occur.
The first is an increase in unfolding rate of proteins
kun(Thigh) = δ · kun(Tlow), and the second is an in-
crease in σ factor production represented by the param-
eter η(T ) in translation of σ, which ultimately leads to
the increased production of DnaK and FtsH. This change
in η is mediated by a temperature-dependent change to
the structure of the σ32 mRNA, caused by a melting
of certain bonds that result in the RNA being more
accessible to ribosomes. This acts as a direct temperature
sensor in the HSR system. Increases in unfolded protein
cause an immediate increase in free σ factor, because
the high concentration of unfolded protein displaces any
sequestered σ factor bound to DnaK. This increase in
free σ factor, along with the increased production rate,
cause a fast spike in production of DnaK and FtsH.
Because the σ factor is no longer sequestered it will
no longer be degraded by FtsH, further boosting its net
production. Once DnaK has reduced unfolded protein
to pre-shock levels, excess chaperone will re-sequester
σ factor and facilitate degradation via protease, reducing
production of both DnaK and FtsH. These mechanisms
act as two negative feedback loops between σ factor and
the proteins it regulates.

In fig. 1 we present a block diagram of the full
system containing a single feedforward mechanism and
two feedback loops. A more detailed explanation of the
biology of the HSR system can be found in [6]. Our

deterministic model of the system consists of 6 ODEs:

[ ˙̂σ] =kpη(T )[Mσ]− kpd[σ̂]− kpr[σ : D : F ] (1)

[ṀD] =kmD[σ]− kmd[MD] (2)

[ṀF ] =kmF [σ]− kmd[MF ] (3)

[
˙̂
D] =kp[MD]− kpd[D̂] (4)

[Ḟ ] =kp[MF ]− kpd[F ] (5)

[
˙̂
Pun] =kun(T )([Ptot]− [P̂un])− kf [P : D], (6)

and 6 algebraic relationships:

[σ : D] =KσD[σ][D] (7)
[σ : D : F ] =KσF [σ : D][F ] (8)

[P : D] =KPD[Pun][D] (9)
[σ̂] =[σ] + [σ : D : F ] + [σ : D] (10)

[D̂] =[D] + [P : D] + [σ : D]

+ [σ : D : F ] (11)

[P̂un] =[Pun] + [P : D]. (12)

Note that [̂·] denotes the total quantity of the protein,
[·] represent the free (i.e. unbound) quantity of the
protein, and [· : ·] represents complexed proteins. We
provide tables describing all variables (table I) and
parameters (table II) of the system in section V-A for
reference. This model is based on a more complex one
proposed by El-Samad et al. [4], which contains a mix of
31 algebraic and differential equations. One of the core
assumptions that makes both our model and previous
ones tractable is that fast dynamics (e.g. biochemical
interactions) are assumed to be at quasi-steady state and
that no delays are explicitly modeled. In section V we
discuss how these assumptions make it difficult to study
certain properties of the HSR, such as the relationship
between feedforward response and delays in the system.
While this likely plays an important role in biology,
our model likely undersells the role of planning (here
feedforward) in the HSR system.

Our model not only has fewer equations, but also has
the property that the algebraic relationship can be ex-
plicitly approximated, whereas in the original work these
constraints had to be implicitly solved. In section V-B
we explain in more detail how we derive this model
from the original and justify our approximations. The
simplicity not only makes the model tractable for theo-
retical analysis, but also makes it possible to simulate the
system using an explicit solver in MATLAB (as opposed
to the implicit solver required for the original model).

We believe that this model is relatively simple while
still accurately capturing the complexity of the natu-
ral HSR system. Our formulation manages to be sim-
ple enough to be analytically tractable, yet compli-
cated enough to have interesting performance trade-offs
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(which will be analyze in sections III and IV). Due to the
model’s relative simplicity, it is possible to analytically
approximate the steady-state solutions of most quantities
in the system. First we note that [σ]ss determines [D̂]ss
and [F ]ss:

[MD]ss =
kmD
kmd

[σ]ss =⇒ [D̂]ss =
kp
kpd

kmD
kmd

[σ]ss,

[MF ]ss =
kmF
kmd

[σ]ss =⇒ [F ]ss =
kp
kpd

kmF
kmd

[σ]ss.

Next, if we are in the regime where the system is
capable of efficient refolding ([Ptot]� [Pun]ss) and that
feedback results in most DnaK being bound to unfolded
protein ([P : D] ≈ [D̂]), then we get the relationship

[D̂]ss ≈
kun(T )

kf
[Ptot]. (13)

This yields the relationship

[σ]ss ≈
kpd
kp

kmd
kmD

kun(T )

kf
[Ptot]. (14)

We note that this independence of [σ]ss and the protease
rate kpr was observed experimentally in [6].

Next we can see from eq. (1), with the assumption
that the intrinsic protein degradation rate is much slower
than active degradation via FtsH (kpd � kpr), that

[σ : D : F ]ss ≈
kp
kpr

η(T )[Mσ]. (15)

Finally, if we assume that there is enough FtsH such that
it will bind to most sequestered σ factor ([σ : D]� [σ :
D : F ], or equivalently K−1

σF � [F ]), we can combine
these terms to see that [σ̂]ss ≈ [σ]ss + [σ : D : F ]ss.

The result of this design is a fast system that is able to
quickly create new DnaK proteins when heat shock first
occurs, and is then able to quickly adapt down once the
system has been stabilized (see green curves in figure
fig. 2). In the next section we will explore in more depth
how and why this architecture performs so well.

III. ARCHITECTURE

Here we can observe some interesting properties of
eqs. (14) and (15). First we note that, when the assump-
tions of the previous section hold, the biochemical pa-
rameters KσF , KσD, and KPD do not appear anywhere
in the steady state equations. This tells us that the system
in some sense abstracts away the particulars of the
binding kinetics and makes the system purely dependent
on the topology of the network at the biochemical level.
This is largely a result of assumptions regarding time
scales (i.e. that biochemistry is much faster than gene
expression) and concentration scales (i.e. the inequalities
that allowed us to derive eqs. (14) and (15)). While it
is not obvious from the physics of the system that these

Fig. 2. The dynamics of the architectures described in section III.
Here we see that, for a given set of parameters, the full HSR system
architecture responds much more quickly than the simpler designs. We
choose parameters to match pre-stimulus steady-state values of [σ̂] and
[D̂] as closely as possible. For all architectures we use parameters
as described in table II. We note that the dynamics of [F ] match
almost exactly to those of [D̂] up to scaling (the same is true of
their respective mRNAs), this is because our simple model of protein
synthesis leads to these species having the same dependence on [σ],
up to parameter scaling. We note that the bottom two panels do not
have blue trajectories because [F ] does not appear in that architecture.

assumptions all must hold simultaneously, it seems to
be the case that the HSR system evolved to operate in
a regime where they are correct.

Second we note that, since [σ]ss and [σ : D : F ]ss
reflect different aspects of the overall concentration of σ
factor, we would intuitively expect them to be governed
by many of the same parameters. In fact we see that,
with the exception of the protein synthesis rate kp, the
parameters that do appear in both eqs. (14) and (15)
are entirely non-overlapping. When we consider the
temperature dependent parameters η(T ) and kun(T ), we
see that all of the feedforward architecture (i.e. direct
measurement and response to changes in temperature
caused by the parameter η) is encapsulated by [σ : D :
F ]ss in eq. (14), and all of the feedback architecture
(measurement of and response to changes in [Pun],
rather than T directly, mediated by kun), is reflected
by [σ]ss in eq. (15).

If we now think about the dynamics of the system (see
curves in fig. 2), this separation is a nice feature. We
note that, to compare different architectures, we choose
parameters such that the steady-state values of [σ̂] are the
same across simulations. When heat shock first occurs,
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the fast increase in production via η(T ) and decrease
in degradation via FtsH will cause a spike in σ factor,
allowing for a fast initial refolding response. Because
these terms do not appear in the steady-value of [σ̂]ss in
eq. (14), it effectively allows for tuning of dynamics
independently of steady-state response in the system.
We note that the approximations presented here do not
capture the precise value of [Pun]ss accurately, because
eq. (13) implies [Pun]ss = 0. The simulations in fig. 2
show that [Pun]ss has a small but non-zero steady-state
value.

To provide contrast to our analysis so far, we will now
examine some alternative designs for the HSR system.
We will describe first some qualitative features of the
different designs, and then in the next section delve into
more quantitative comparisons.

A. Sequestration and Degradation Feedback Architec-
ture

Fig. 3. Block Diagram of the Sequestration and Degradation Feedback
Architecture

This architecture assumes that there are two feedback
control mechanisms in response to heat shock that
respectively sequester σ factor with DnaK, and then
degrade it (see fig. 3):

[ ˙̂σ] =kpη[Mσ]− kpd[σ̂]− kpr[σ : D : F ]

[ṀD] =kmD[σ]− kmd[MD]

[ṀF ] =kmF [σ]− kmd[MF ]

[
˙̂
D] =kp[MD]− kpd[D̂]

[Ḟ ] =kp[MF ]− kpd[F ]

[
˙̂
Pun] =kun(T )([Ptot]− [P̂un])− kf [P : D],

This system incorporates dynamics analogous to those
in eqs. (1), (2), (4), (6), (9), (11) and (12). The only
difference is that in this case the translation rate of
σ factor, η, does not increase with temperature. This
architecture effectively has a lower σ32 translation rate
than an architecture with the feedforward mechanism.

We see in fig. 2 that this system has a somewhat
slower adaptation time to that of the system with full
regulation, and the steady state concentration of [P̂un] is
higher, implying imprecise adaptation. When feedback,

is present there is more than enough total σ factor to
produce the requisite amount of DnaK to refold proteins.
In the absence of the feedforward response, it is the
case that most of the σ factor is needed to produce as
much DnaK as possible, so the small amount that is
sequestered and degraded has a significant impact on the
steady-state level of [P̂un]. In this sense, it seems that a
significant role of the feedforward loop is to ensure that
there is enough total σ factor to balance the effects of
degradation feedback. Because kpr � kpd, even small
amounts of sequestered protein can lead to reduced lev-
els of DnaK when the system is saturated, consequently
increasing the final level of unfolded protein.

B. Feedforward and Sequestration Feedback Architec-
ture

Fig. 4. Block Diagram of the Sequestration Feedback Architecture

This architecture contains only a single feedback loop
where DnaK binds to σ factor, sequestering it (see
fig. 4). We also add in the effect of the feedforward
mechanism, which essentially provides an immediate
response to temperature changes via an increase to the
translation rate of σ factor. In terms of the model,
we simply modify the equation for [σ̂] so that η is
temperature dependent and kpr = KσF = 0,

[ ˙̂σ] = kpη(T )[Mσ]− kpd[σ̂]. (16)

This is almost identical to the full HSR system described
in section II, except that it lacks the degradation feed-
back loop mediated by the protease FtsH. This feedback
serves to regulate the free amount of [σ], but has no
direct affect on the total amount [σ̂]. We can use the
same argument from section II to see that [σ]ss will be
approximately the same as in eq. (14):

[σ]ss ≈
kpd
kp

kmd
kmD

kun(T )

kf
[Ptot],

And the complex will have the form

[σ : D]ss = [σ̂]ss − [σ]ss

≈ kp
kpd

(
η(T )[Mσ]−

kun(T )

γ
[Ptot]

)
, (17)

where

γ = kf
k2p
k2pd

kmD
kmd

.
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We can think of this feedback system as serving two
purposes. First, we see that it provides the benefit
generally seen in feedback systems, namely that the
signal level (in this case [σ]) can be directly coupled
to the disturbance that it is trying to compensate for,
kun(T ). This feedback mechanism can also serve to
provide fast response for the system, in that a large
amount of σ factor can be stored in the complex [σ : D]
and quickly released during heat shock (see the blue
curves in fig. 2).

The downside to this architecture is that it is, in a
sense, leaky. We see from eq. (16) that the time scale
for [σ̂] to reach steady state is determined by the protein
degradation rate kpd, which is typically quite slow (we
use kpd = .03min−1, corresponding to a dilution-limited
time scale of about 30 minutes). If the system has a low
initial amount of σ factor, (corresponding to a small
value of [Mσ]), then the time to refold proteins may
be comparable to the scale of kpd (as seen in the blue
curves in fig. 2). Since the cell division time of E.
coli is approximately 20-30 minutes, it would likely be
dangerous (if not lethal) for the cell to respond on such
a long time scale.

Alternatively, the cell could have a high initial amount
of [σ̂] (large [Mσ]), and a correspondingly large amount
of [σ : D]. This would allow for fast response, however
[σ̂] would still reach steady state on time scale set
by kpd. This implies that after the cell has already
adapted to heat shock, it would still be synthesizing σ
factor unnecessarily and simply sequestering it into the
complex [σ : D], as can be seen by the fact that eq. (17)
is a function of both η(T ) and kun(T ).

This is in contrast from the full model in section II,
where sequestered and free σ factor are governed by
separate parameters (see eqs. (14) and (15)). Intuitively,
this is a result of the protease providing much faster
degradation than would intrinsically be seen in a cell
(i.e. kpr � kpd).

C. Natural Architecture

The simpler architectures described in the previous
sections serve to motivate the benefits of the natural
HSR system (seen in fig. 1). We see that the structure
of eqs. (1) to (12) allows for a layering of what we
might consider planning (the terms in the feedforward
loop η(T ) and [Mσ], contained in the expression for
[σ : D : F ]ss in eq. (15)) and control (the terms in
the feedback loop kmD, kmd, and kf , contained in the
expression for [σ]ss in eq. (14)).

The independence of parameters in these layers allows
for evolution to tune the system’s dynamics independent
of steady-state expression levels, a powerful feature that
likely has been taken advantage of over the billions of
years the system has been in place. In the next section,

we will explore parametric variations in these different
architectures to gain a better understand of the trade-offs
that constrain their performance.

IV. TRADE-OFF ANALYSIS

In this section we will explore quantitative trade-offs
in performance for the HSR system. While the primary
goal of the system is to refold proteins, we can see from
fig. 2 that simply achieving a good steady state does
not fully characterize the performance of the different
architectures. We see that, while all of the architectures
are capable of achieving a good steady state, they do
so on different time scales and with different levels of
efficiency. We define the response time to be the amount
of time between when heat shock occurs, and when
[P̂un] first comes within 5% of [P̂un]ss. We define the
inefficiency of the response to be:

Inefficiency = 1− [P : D]ss

[D̂]ss
,

the fraction of [D̂] that is not being utilized for protein
folding at steady state. Intuitively we might think of the
most efficient response as the one that produces exactly
as much [D̂] as there is [P̂un]ss. Any excess [D̂] is not
refolding proteins, and is thus considered to be in excess.
An ideal architecture would not only be able to refold
proteins efficiently, but would also minimize response
time and inefficiency.

In fig. 5 we explore these trade-offs by randomly
varying the parameters [Mσ] and KσD, and examining
the performance of architectures that refold at least 85%
of proteins within 100 minutes. The specifics of these
thresholds are somewhat arbitrary, but the key idea is to
only look at parameter sets where the HSR system is at
least somewhat functional. Intuitively, it does not matter
how fast or efficient a circuit is if it is not able to perform
the primary task of refolding proteins. The reasoning
behind our choice of [Mσ] and KσD as the varying
parameters is that they directly affect σ factor dynamics
and are not global parameters of the cell (like kp and
kpd). We omit varying kpr and KσF , the respective
protease degradation and binding rates, because they are
only present in the full architecture and would not affect
the simpler architectures.

We see in fig. 5A that there is a clear separation
between the architectures with degradation feedback
(green and black points) and the one without it (blue
points). This is due to the fact that much of the fast
response time of the system is tied to the degradation
mechanism, so in order for the architecture without it to
respond quickly, it must greatly overproduce DnaK and
consequently be highly inefficient.

One might also consider efficiency in terms of the rate
at which a circuit incurs metabolic overhead. It is likely

1100



Fig. 5. Trade-offs across architectures. Here we simulate the dynamics
of each architecture for 1000 random parameter sets, where we sample
values over Mσ ∈ [1, 100] and KσD ∈

[
10−4, 10−2

]
, with all

other parameters kept as they are in fig. 2. These two parameters
allow us to tune both the total amount of σ factor and the strength of
the sequestration feedback loop (for the architectures with feedback).
Each panel shows a different pairwise tradeoff between performance
metrics, providing insight into the robustness of the qualitative features
discussed in section III.

that cells face heat shock rarely, so it makes sense to
think about how much ATP (the common unit of energy
in the cell) per minute a given architecture uses in the
absence of heat shock. While precise numbers for this
may be difficult to come by, a reasonable proxy can be
calculated easily in terms of how much ATP is spent
on protein production, as this is likely the dominant
metabolic expense to the cell. Using estimates of ATP
use as a function of protein size, we estimate a cost of
α = 2400 ATP

protein for large proteins (DnaK and FtsH) and
β = 1200 ATP

protein for small proteins (σ factor) [7]. The
overhead rate is then computed from the steady-state
production rates in the absence of heat shock,

Overhead = βkpη(Tlow)[Mσ]+αkp[MD]ss+αkp[MF ]ss.

We see in fig. 5B that the more complex architectures
outperform the simpler ones. First we see again that the
systems with degradation outperform the one without it.
Because the feedforward mechanism allows for a very
fast change to the translation rate of σ factor, it is the
case that for a given protein overhead the feedforward

system systematically responds more quickly to heat
shock. The few cases that respond quickly but with high
overhead also likely sacrifice a great deal of resources
to overproduce DnaK and are effectively behaving as an
open-loop response.

In fig. 5C we see that the full HSR system actu-
ally performs worse in terms of the trade-off between
overhead and inefficiency. This is because the simpler
architecture that perform well in this trade-off (i.e. those
that are efficient and cheap), have the worst response
time. This tells us that evolution may have selected
strongly for architecture that optimizes response time,
at the expense of some performance on the other two
metrics.

V. DISCUSSION

In this work, we presented a novel theoretical perspec-
tive on the architecture and design of the heat shock
response system in E. coli. We showed that the HSR
system seen in nature has many desirable properties,
such as layering, speed, and efficiency. Further, we
showed that simpler hypothetical architectures for the
HSR system are not sufficient to match the response of
the full architecture.

More generally, we believe that the HSR system
serves as an ideal example of engineering trade-offs
in a biological setting. While several architectures are
capable of performing the task of refolding proteins,
there are many other performance metrics that may
be subject to selective pressure. In engineered control
systems stability is a primary goal, however properties
such as speed, robustness, and cost are equally important
for a system to be functional in the real world. Similar
constraints are likely pervasive in biology, leading to the
apparent complexity of many biological systems beyond
what would naively be necessary.

Our analysis shows, through a combination of theory
and simulation, that it is possible to systematically
investigate the role of complexity in biology. In the
future, we plan to expand our model to incorporate
stochastic effects and a more nuanced model of heat
shock. While our deterministic model was sufficient to
ask many interesting questions, it is not able to tell us
how noise in the system affects performance. Because σ
factor is often at very low copy number, it is likely that
stochastic effects play an important role and may present
trade-offs that are hidden in the deterministic setting.

Similarly, our model likely hides some of the perfor-
mance gain from the feedforward system. In our model,
σ factor translation and heat shock occur at exactly the
same time. In reality it is plausible that heat shock is
gradual and that the feedforward mechanism is activated
before a large accumulation of unfolded proteins occurs.
If this is the case, then the feedforward mechanism likely
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Fig. 6. The effect of advanced warning. Here we model advanced
warning as a time delay τ between when σ32 mRNA first initiates
translation and when proteins start to become misfolded. In each
simulation, kp, kpd, and kpr are scaled relative to their nominal
respective values of kp = 20min−1, kpd = .03min−1, and kpr =
5min−1 such that the steady-state concentrations remain the same
across simulations. For all systems advanced warning reduces the peak
transient value of [Pun], however for systems with higher turnover
rates the benefit is larger and peaks at a lower value of τ . The
oscillations that appear for higher turnover rate systems are likely the
related to when the peak value of [Pun] occurs relative to the peak
level of [DnaK].

serves a more direct planning role for the system than
is apparent in the simulations we have presented so far.

To study the effect of this sort of advanced warning,
we repeated our previous simulations with addition of a
parameter τ that represents how much earlier σ32 mRNA
initiates translation before unfolded protein begin to
accumulate. We observe in fig. 6 that advanced warning
does in fact reduce the peak transient levels of [Pun],
however the benefit of increasing advanced warning
levels off roughly around τ > 5 mins. To study how
this effect interacts with parameters, we scale kp, kpr,
and kpd such that the steady-state concentrations of all
total species remains the same.

While it is difficult to analytically study the role this
sort of discrete delay in the dynamics, these simulations
result yield insight into how biology might tune param-
eters to improve transient performance. It appears that
when dynamics are slow (low kp) there are moderate
benefits to long advanced warning. For fast dynamics
the benefits are larger and require less warning. Since
we are essentially tuning the turnover rate of all proteins
in the system, this implies that the systems which get
the most out of this sort of warning are those that have
high gains and thus are less efficient.

We find it encouraging that even a relatively simple
model like that of the HSR system yields dynamics are
quite complex and difficult to analyze in general. While
we derived some approximate results, the nonlinearities
in the system make it difficult to write down closed-form
solutions to the various steady-states of the system in
general. Further, these structural nonlinearities make it
challenging to say anything precise about the dynamics

of the system. Because the heat shock radically disturbs
the system, linearizations that work well locally do a
poor job of describing the global dynamics. We hope
that future will yield deeper theoretical insights into the
types of complex control systems that are pervasive in
biology.

APPENDIX

A. Description of Variables and Parameters

Variable Description Initial Condition

σ
The σ factor σ32, regulates tran-
scription of HSPs 30

D
The chaperone DnaK, responsi-
ble for refolding proteins 10,000

F
The protease FtsH, responsible
for degrading σ factor 1,000

MD
DnaK mRNA, responsible for
translation of DnaK 10

MF
FtsH mRNA, responsible for
translation of FtsH 3

Pun Unfolded protein in the cell 30,000

TABLE I
TABLE CONTAINING VARIABLE DESCRIPTIONS

Here we present tables describing the variables and
parameters of the HSR system, along with descriptions
and initial conditions/parameter values used in typical
simulations. We followed parameters as much as was
possible from [4], with the only difference being the
translation rates kmD and kmF which had to be fit
to typical steady-state values seen in their simulations.
The reason for this is that these two parameters in
our model reflect a large number of processes in their
original model (mostly involving the binding of RNA
polymerase), which we found could be simplified while
still faithfully reproducing the dynamics seen in [4].

B. Model Reduction and Assumptions

In [4] and [5], detailed models of the HSR system
are presented which aim to capture all relevant cellular
processes at a mechanistic level. These models are quite
complex (each containing on the order of 30 equations),
and incorporate biochemistry, gene expression, and tran-
scription/translation. Since these processes occur on
vastly different time scales, the original models make a
quasi-steady state assumption and treat fast processes as
if they are algebraic (rather than differential) equations.

This makes simulations tractable, however the alge-
braic constraints were so complex that they could only
reasonably be simulated with an implicit Differential-
Algebraic Equation (DAE) solver. The shear number of
equations makes it difficult to make an simplifications
that would allow for analytic approximations to the al-
gebraic constraints. To simplify the system, we observed
that much of the complexity of the original model stems
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Parameter Description Value
kp Translation rate of proteins 20min−1

kpd
Intrinsic degradation rate of
proteins 0.03min−1

kpr
Protease degradation rate of σ
factor 5min−1

kmD
Transcription rate of DnaK
mRNA 0.45min−1

kmF
Transcription rate of FtsH
mRNA 0.03min−1

kmd Degradation rate of mRNA 0.5min−1

KσD
Dissociation constant for [σ :
D] binding

1
400

M−1

KσF
Dissociation constant for [σ :
D : F ] binding

1
400

M−1

KPD
Dissociation constant for [P :
D] binding

1
400

M−1

[Ptot]
Total amount of protein in the
cell 2 · 106

[Mσ ]
Amount of σ factor mRNA in
the cell 10

η(Tlow)
Pre-shock translation rate of σ
factor 0.35min−1

η(Thigh)
Post-shock translation rate of
σ factor 1.75min−1

kf Protein refolding rate 15000min−1

kun(Tlow)
Pre-shock protein unfolding
rate 75min−1

kun(Thigh)
Post-shock protein unfolding
rate δ · 75min−1

δ Heat shock magnitude 2

TABLE II
TABLE CONTAINING PARAMETER DESCRIPTIONS AND NOMINAL

VALUES

from the author’s detailed description of transcriptional
regulation. Because they explicitly σ factor binding to
RNA polymerase and the consequent binding of poly-
merase to various sites on the genome, about 1/3 of the
equations have little to do with the actual heat shock
response and mostly govern transcriptional regulation.

We observed that, so long as RNA polymerase and
promoter regions are not saturated, all of these relation-
ships could be captured simply by the level of free σ
factor in the cell. Additionally we observe that, given the
parameter values observed in biology, FtsH is generally
far in excess of σ factor. This means that we can safely
ignore conservation equations for FtsH, further simpli-
fying the model. these assumptions yield the model
described by eqs. (1) to (12). In our model, the only
equations that have implicit dependences are eqs. (10)
to (12). Combining these equations with eqs. (7) to (9),
we can get the relationships:

[σ] =
[σ̂]

1 +KσD[D](1 +KσF [F ])
,

[D] =
[D̂]

1 +KPD[Pun] +KσD[σ](1 +KσF [F ])
,

[Pun] =
[P̂un]

1 +KPD[D]
.

These equations all depend on each other, so analyt-
ical expressions for [σ], [D], and [P̂un] would require
us to solve a system of three nonlinear equations.
Fortunately, we can simplify the system by making
assumptions based on biological information. First we
assume [σ : D]� [Pun : D], or equivalently KσD[σ]�
KPD[Pun]. This gives us a simpler equation for free
DnaK:

[D] =
[D̂]

1 +KPD[Pun]
.

Now we can solve for [σ] if we know [D], and [D] if
we know [Pun]. Using the equations for [D] and [Pun],
we get a quadratic with the solution:

[Pun] =
−α+

√
α2 + 4β

2
,

α = K−1
PD − [P̂un] + [D̂], β =

[P̂un]

KPD
.

Since we can solve for [Pun] independently of [D] and
[σ], we can solve the entire system explicitly, give values
of [F ], [D̂], [σ̂], and [P̂un] determined by the ODES in
eqs. (1) to (6). With this result, we were able to simulate
the model with the MATLAB ode15s function, and have
it match almost exactly to the results in [4].
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